ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem3a GIF version

Theorem tfrlem3a 5955
Description: Lemma for transfinite recursion. Let 𝐴 be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in 𝐴 for later use. (Contributed by NM, 9-Apr-1995.)
Hypotheses
Ref Expression
tfrlem3.1 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
tfrlem3.2 𝐺 ∈ V
Assertion
Ref Expression
tfrlem3a (𝐺𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤))))
Distinct variable groups:   𝑤,𝑓,𝑥,𝑦,𝑧,𝐹   𝑓,𝐺,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑓)

Proof of Theorem tfrlem3a
StepHypRef Expression
1 tfrlem3.2 . 2 𝐺 ∈ V
2 fneq12 5019 . . . 4 ((𝑓 = 𝐺𝑥 = 𝑧) → (𝑓 Fn 𝑥𝐺 Fn 𝑧))
3 simpll 489 . . . . . . 7 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑓 = 𝐺)
4 simpr 107 . . . . . . 7 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑦 = 𝑤)
53, 4fveq12d 5211 . . . . . 6 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓𝑦) = (𝐺𝑤))
63, 4reseq12d 4640 . . . . . . 7 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝑓𝑦) = (𝐺𝑤))
76fveq2d 5209 . . . . . 6 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → (𝐹‘(𝑓𝑦)) = (𝐹‘(𝐺𝑤)))
85, 7eqeq12d 2070 . . . . 5 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → ((𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ (𝐺𝑤) = (𝐹‘(𝐺𝑤))))
9 simpr 107 . . . . . 6 ((𝑓 = 𝐺𝑥 = 𝑧) → 𝑥 = 𝑧)
109adantr 265 . . . . 5 (((𝑓 = 𝐺𝑥 = 𝑧) ∧ 𝑦 = 𝑤) → 𝑥 = 𝑧)
118, 10cbvraldva2 2554 . . . 4 ((𝑓 = 𝐺𝑥 = 𝑧) → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)) ↔ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤))))
122, 11anbi12d 450 . . 3 ((𝑓 = 𝐺𝑥 = 𝑧) → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ (𝐺 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤)))))
1312cbvrexdva 2557 . 2 (𝑓 = 𝐺 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦))) ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤)))))
14 tfrlem3.1 . 2 𝐴 = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓𝑦)))}
151, 13, 14elab2 2712 1 (𝐺𝐴 ↔ ∃𝑧 ∈ On (𝐺 Fn 𝑧 ∧ ∀𝑤𝑧 (𝐺𝑤) = (𝐹‘(𝐺𝑤))))
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102   = wceq 1259  wcel 1409  {cab 2042  wral 2323  wrex 2324  Vcvv 2574  Oncon0 4127  cres 4374   Fn wfn 4924  cfv 4929
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-res 4384  df-iota 4894  df-fun 4931  df-fn 4932  df-fv 4937
This theorem is referenced by:  tfrlem3  5956  tfrlem5  5960  tfrlemisucaccv  5969  tfrlemibxssdm  5971  tfrlemi14d  5977  tfrexlem  5978
  Copyright terms: Public domain W3C validator