MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2fvcoidd Structured version   Visualization version   GIF version

Theorem 2fvcoidd 7053
Description: Show that the composition of two functions is the identity function by applying both functions to each value of the domain of the first function. (Contributed by AV, 15-Dec-2019.)
Hypotheses
Ref Expression
2fvcoidd.f (𝜑𝐹:𝐴𝐵)
2fvcoidd.g (𝜑𝐺:𝐵𝐴)
2fvcoidd.i (𝜑 → ∀𝑎𝐴 (𝐺‘(𝐹𝑎)) = 𝑎)
Assertion
Ref Expression
2fvcoidd (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
Distinct variable groups:   𝐴,𝑎   𝐹,𝑎   𝐺,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐵(𝑎)

Proof of Theorem 2fvcoidd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2fvcoidd.g . . 3 (𝜑𝐺:𝐵𝐴)
2 2fvcoidd.f . . 3 (𝜑𝐹:𝐴𝐵)
3 fcompt 6895 . . 3 ((𝐺:𝐵𝐴𝐹:𝐴𝐵) → (𝐺𝐹) = (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))))
41, 2, 3syl2anc 586 . 2 (𝜑 → (𝐺𝐹) = (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))))
5 2fvcoidd.i . . . . . 6 (𝜑 → ∀𝑎𝐴 (𝐺‘(𝐹𝑎)) = 𝑎)
6 2fveq3 6675 . . . . . . . 8 (𝑎 = 𝑥 → (𝐺‘(𝐹𝑎)) = (𝐺‘(𝐹𝑥)))
7 id 22 . . . . . . . 8 (𝑎 = 𝑥𝑎 = 𝑥)
86, 7eqeq12d 2837 . . . . . . 7 (𝑎 = 𝑥 → ((𝐺‘(𝐹𝑎)) = 𝑎 ↔ (𝐺‘(𝐹𝑥)) = 𝑥))
98rspccv 3620 . . . . . 6 (∀𝑎𝐴 (𝐺‘(𝐹𝑎)) = 𝑎 → (𝑥𝐴 → (𝐺‘(𝐹𝑥)) = 𝑥))
105, 9syl 17 . . . . 5 (𝜑 → (𝑥𝐴 → (𝐺‘(𝐹𝑥)) = 𝑥))
1110imp 409 . . . 4 ((𝜑𝑥𝐴) → (𝐺‘(𝐹𝑥)) = 𝑥)
1211mpteq2dva 5161 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))) = (𝑥𝐴𝑥))
13 mptresid 5918 . . 3 ( I ↾ 𝐴) = (𝑥𝐴𝑥)
1412, 13syl6eqr 2874 . 2 (𝜑 → (𝑥𝐴 ↦ (𝐺‘(𝐹𝑥))) = ( I ↾ 𝐴))
154, 14eqtrd 2856 1 (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wral 3138  cmpt 5146   I cid 5459  cres 5557  ccom 5559  wf 6351  cfv 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363
This theorem is referenced by:  2fvidf1od  7054  2fvidinvd  7055
  Copyright terms: Public domain W3C validator