Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afveq12d Structured version   Visualization version   GIF version

Theorem afveq12d 39663
Description: Equality deduction for function value, analogous to fveq12d 6090. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypotheses
Ref Expression
afveq12d.1 (𝜑𝐹 = 𝐺)
afveq12d.2 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
afveq12d (𝜑 → (𝐹'''𝐴) = (𝐺'''𝐵))

Proof of Theorem afveq12d
StepHypRef Expression
1 afveq12d.1 . . . 4 (𝜑𝐹 = 𝐺)
2 afveq12d.2 . . . 4 (𝜑𝐴 = 𝐵)
31, 2dfateq12d 39659 . . 3 (𝜑 → (𝐹 defAt 𝐴𝐺 defAt 𝐵))
41, 2fveq12d 6090 . . 3 (𝜑 → (𝐹𝐴) = (𝐺𝐵))
53, 4ifbieq1d 4054 . 2 (𝜑 → if(𝐹 defAt 𝐴, (𝐹𝐴), V) = if(𝐺 defAt 𝐵, (𝐺𝐵), V))
6 dfafv2 39662 . 2 (𝐹'''𝐴) = if(𝐹 defAt 𝐴, (𝐹𝐴), V)
7 dfafv2 39662 . 2 (𝐺'''𝐵) = if(𝐺 defAt 𝐵, (𝐺𝐵), V)
85, 6, 73eqtr4g 2664 1 (𝜑 → (𝐹'''𝐴) = (𝐺'''𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  Vcvv 3168  ifcif 4031  cfv 5786   defAt wdfat 39642  '''cafv 39643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-rex 2897  df-rab 2900  df-v 3170  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-br 4574  df-opab 4634  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-res 5036  df-iota 5750  df-fun 5788  df-fv 5794  df-dfat 39645  df-afv 39646
This theorem is referenced by:  afveq1  39664  afveq2  39665  csbafv12g  39667  afvco2  39706  aoveq123d  39708
  Copyright terms: Public domain W3C validator