 Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopth Structured version   Visualization version   GIF version

Theorem altopth 31715
 Description: The alternate ordered pair theorem. If two alternate ordered pairs are equal, their first elements are equal and their second elements are equal. Note that 𝐶 and 𝐷 are not required to be a set due to a peculiarity of our specific ordered pair definition, as opposed to the regular ordered pairs used here, which (as in opth 4905), requires 𝐷 to be a set. (Contributed by Scott Fenton, 23-Mar-2012.)
Hypotheses
Ref Expression
altopth.1 𝐴 ∈ V
altopth.2 𝐵 ∈ V
Assertion
Ref Expression
altopth (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem altopth
StepHypRef Expression
1 altopth.1 . 2 𝐴 ∈ V
2 altopth.2 . 2 𝐵 ∈ V
3 altopthg 31713 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
41, 2, 3mp2an 707 1 (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶𝐵 = 𝐷))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  Vcvv 3186  ⟪caltop 31702 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-sn 4149  df-pr 4151  df-altop 31704 This theorem is referenced by:  altopthd  31718  altopelaltxp  31722
 Copyright terms: Public domain W3C validator