MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpr Structured version   Visualization version   GIF version

Theorem axpr 4731
Description: Unabbreviated version of the Axiom of Pairing of ZF set theory, derived as a theorem from the other axioms.

This theorem should not be referenced by any proof. Instead, use ax-pr 4732 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 14-Nov-2006.) (New usage is discouraged.)

Assertion
Ref Expression
axpr 𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
Distinct variable groups:   𝑥,𝑧,𝑤   𝑦,𝑧,𝑤

Proof of Theorem axpr
StepHypRef Expression
1 zfpair 4730 . . 3 {𝑥, 𝑦} ∈ V
21isseti 3086 . 2 𝑧 𝑧 = {𝑥, 𝑦}
3 dfcleq 2508 . . 3 (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤𝑧𝑤 ∈ {𝑥, 𝑦}))
4 vex 3080 . . . . . . 7 𝑤 ∈ V
54elpr 4049 . . . . . 6 (𝑤 ∈ {𝑥, 𝑦} ↔ (𝑤 = 𝑥𝑤 = 𝑦))
65bibi2i 325 . . . . 5 ((𝑤𝑧𝑤 ∈ {𝑥, 𝑦}) ↔ (𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
7 biimpr 208 . . . . 5 ((𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)) → ((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧))
86, 7sylbi 205 . . . 4 ((𝑤𝑧𝑤 ∈ {𝑥, 𝑦}) → ((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧))
98alimi 1715 . . 3 (∀𝑤(𝑤𝑧𝑤 ∈ {𝑥, 𝑦}) → ∀𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧))
103, 9sylbi 205 . 2 (𝑧 = {𝑥, 𝑦} → ∀𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧))
112, 10eximii 1742 1 𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381  wal 1472   = wceq 1474  wex 1694  wcel 1938  {cpr 4030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-rep 4597  ax-sep 4607  ax-nul 4616  ax-pow 4668
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-v 3079  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-pw 4013  df-sn 4029  df-pr 4031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator