Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-opelidres Structured version   Visualization version   GIF version

Theorem bj-opelidres 34456
Description: Characterization of the ordered pairs in the restricted identity relation when the intersection of their component belongs to the restricting class. TODO: prove bj-idreseq 34457 from it. (Contributed by BJ, 29-Mar-2020.)
Assertion
Ref Expression
bj-opelidres (𝐴𝑉 → (⟨𝐴, 𝐵⟩ ∈ ( I ↾ 𝑉) ↔ 𝐴 = 𝐵))

Proof of Theorem bj-opelidres
StepHypRef Expression
1 bj-idres 34455 . . 3 ( I ↾ 𝑉) = ( I ∩ (𝑉 × 𝑉))
21eleq2i 2904 . 2 (⟨𝐴, 𝐵⟩ ∈ ( I ↾ 𝑉) ↔ ⟨𝐴, 𝐵⟩ ∈ ( I ∩ (𝑉 × 𝑉)))
3 elin 4169 . . 3 (⟨𝐴, 𝐵⟩ ∈ ( I ∩ (𝑉 × 𝑉)) ↔ (⟨𝐴, 𝐵⟩ ∈ I ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑉)))
4 inex1g 5223 . . . . . 6 (𝐴𝑉 → (𝐴𝐵) ∈ V)
5 bj-opelid 34451 . . . . . 6 ((𝐴𝐵) ∈ V → (⟨𝐴, 𝐵⟩ ∈ I ↔ 𝐴 = 𝐵))
64, 5syl 17 . . . . 5 (𝐴𝑉 → (⟨𝐴, 𝐵⟩ ∈ I ↔ 𝐴 = 𝐵))
7 opelxp 5591 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑉) ↔ (𝐴𝑉𝐵𝑉))
87a1i 11 . . . . 5 (𝐴𝑉 → (⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑉) ↔ (𝐴𝑉𝐵𝑉)))
96, 8anbi12d 632 . . . 4 (𝐴𝑉 → ((⟨𝐴, 𝐵⟩ ∈ I ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑉)) ↔ (𝐴 = 𝐵 ∧ (𝐴𝑉𝐵𝑉))))
10 simpl 485 . . . . 5 ((𝐴 = 𝐵 ∧ (𝐴𝑉𝐵𝑉)) → 𝐴 = 𝐵)
11 eleq1 2900 . . . . . . . 8 (𝐴 = 𝐵 → (𝐴𝑉𝐵𝑉))
1211biimpcd 251 . . . . . . 7 (𝐴𝑉 → (𝐴 = 𝐵𝐵𝑉))
1312anc2li 558 . . . . . 6 (𝐴𝑉 → (𝐴 = 𝐵 → (𝐴𝑉𝐵𝑉)))
1413ancld 553 . . . . 5 (𝐴𝑉 → (𝐴 = 𝐵 → (𝐴 = 𝐵 ∧ (𝐴𝑉𝐵𝑉))))
1510, 14impbid2 228 . . . 4 (𝐴𝑉 → ((𝐴 = 𝐵 ∧ (𝐴𝑉𝐵𝑉)) ↔ 𝐴 = 𝐵))
169, 15bitrd 281 . . 3 (𝐴𝑉 → ((⟨𝐴, 𝐵⟩ ∈ I ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑉 × 𝑉)) ↔ 𝐴 = 𝐵))
173, 16syl5bb 285 . 2 (𝐴𝑉 → (⟨𝐴, 𝐵⟩ ∈ ( I ∩ (𝑉 × 𝑉)) ↔ 𝐴 = 𝐵))
182, 17syl5bb 285 1 (𝐴𝑉 → (⟨𝐴, 𝐵⟩ ∈ ( I ↾ 𝑉) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  cin 3935  cop 4573   I cid 5459   × cxp 5553  cres 5557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-res 5567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator