Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-idreseq Structured version   Visualization version   GIF version

Theorem bj-idreseq 34457
Description: Sufficient condition for the restricted identity relation to agree with equality. Note that the instance of bj-ideqg 34452 with V substituted for 𝑉 is a direct consequence of bj-idreseq 34457. This is a strengthening of resieq 5864 which should be proved from it (note that currently, resieq 5864 relies on ideq 5723). Note that the intersection in the antecedent is not very meaningful, but is a device to prove versions with either class assumed to be a set. It could be enough to prove the version with a disjunctive antecedent: ((𝐴𝐶𝐵𝐶) → .... (Contributed by BJ, 25-Dec-2023.)
Assertion
Ref Expression
bj-idreseq ((𝐴𝐵) ∈ 𝐶 → (𝐴( I ↾ 𝐶)𝐵𝐴 = 𝐵))

Proof of Theorem bj-idreseq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-brresdm 34441 . . . 4 (𝐴( I ↾ 𝐶)𝐵𝐴𝐶)
2 relres 5882 . . . . 5 Rel ( I ↾ 𝐶)
32brrelex2i 5609 . . . 4 (𝐴( I ↾ 𝐶)𝐵𝐵 ∈ V)
41, 3jca 514 . . 3 (𝐴( I ↾ 𝐶)𝐵 → (𝐴𝐶𝐵 ∈ V))
54adantl 484 . 2 (((𝐴𝐵) ∈ 𝐶𝐴( I ↾ 𝐶)𝐵) → (𝐴𝐶𝐵 ∈ V))
6 eqimss 4023 . . . . . 6 (𝐴 = 𝐵𝐴𝐵)
7 df-ss 3952 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
86, 7sylib 220 . . . . 5 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐴)
98adantl 484 . . . 4 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → (𝐴𝐵) = 𝐴)
10 simpl 485 . . . 4 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → (𝐴𝐵) ∈ 𝐶)
119, 10eqeltrrd 2914 . . 3 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → 𝐴𝐶)
12 eqimss2 4024 . . . . . . 7 (𝐴 = 𝐵𝐵𝐴)
13 sseqin2 4192 . . . . . . 7 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐵)
1412, 13sylib 220 . . . . . 6 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐵)
1514adantl 484 . . . . 5 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → (𝐴𝐵) = 𝐵)
1615, 10eqeltrrd 2914 . . . 4 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → 𝐵𝐶)
1716elexd 3514 . . 3 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → 𝐵 ∈ V)
1811, 17jca 514 . 2 (((𝐴𝐵) ∈ 𝐶𝐴 = 𝐵) → (𝐴𝐶𝐵 ∈ V))
19 brres 5860 . . . 4 (𝐵 ∈ V → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 I 𝐵)))
2019adantl 484 . . 3 ((𝐴𝐶𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵 ↔ (𝐴𝐶𝐴 I 𝐵)))
21 eqeq12 2835 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 = 𝑦𝐴 = 𝐵))
22 df-id 5460 . . . . 5 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
2321, 22brabga 5421 . . . 4 ((𝐴𝐶𝐵 ∈ V) → (𝐴 I 𝐵𝐴 = 𝐵))
2423anbi2d 630 . . 3 ((𝐴𝐶𝐵 ∈ V) → ((𝐴𝐶𝐴 I 𝐵) ↔ (𝐴𝐶𝐴 = 𝐵)))
25 simp3 1134 . . . . 5 (((𝐴𝐶𝐵 ∈ V) ∧ 𝐴𝐶𝐴 = 𝐵) → 𝐴 = 𝐵)
26253expib 1118 . . . 4 ((𝐴𝐶𝐵 ∈ V) → ((𝐴𝐶𝐴 = 𝐵) → 𝐴 = 𝐵))
27 3simpb 1145 . . . . 5 ((𝐴𝐶𝐵 ∈ V ∧ 𝐴 = 𝐵) → (𝐴𝐶𝐴 = 𝐵))
28273expia 1117 . . . 4 ((𝐴𝐶𝐵 ∈ V) → (𝐴 = 𝐵 → (𝐴𝐶𝐴 = 𝐵)))
2926, 28impbid 214 . . 3 ((𝐴𝐶𝐵 ∈ V) → ((𝐴𝐶𝐴 = 𝐵) ↔ 𝐴 = 𝐵))
3020, 24, 293bitrd 307 . 2 ((𝐴𝐶𝐵 ∈ V) → (𝐴( I ↾ 𝐶)𝐵𝐴 = 𝐵))
315, 18, 30pm5.21nd 800 1 ((𝐴𝐵) ∈ 𝐶 → (𝐴( I ↾ 𝐶)𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  cin 3935  wss 3936   class class class wbr 5066   I cid 5459  cres 5557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-res 5567
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator