Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-projval Structured version   Visualization version   GIF version

Theorem bj-projval 32628
 Description: Value of the class projection. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-projval (𝐴𝑉 → (𝐴 Proj ({𝐵} × tag 𝐶)) = if(𝐵 = 𝐴, 𝐶, ∅))

Proof of Theorem bj-projval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elsng 4162 . . . . . . . . 9 (𝐴𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
2 bj-xpima2sn 32589 . . . . . . . . 9 (𝐴 ∈ {𝐵} → (({𝐵} × tag 𝐶) “ {𝐴}) = tag 𝐶)
31, 2syl6bir 244 . . . . . . . 8 (𝐴𝑉 → (𝐴 = 𝐵 → (({𝐵} × tag 𝐶) “ {𝐴}) = tag 𝐶))
43imp 445 . . . . . . 7 ((𝐴𝑉𝐴 = 𝐵) → (({𝐵} × tag 𝐶) “ {𝐴}) = tag 𝐶)
54eleq2d 2684 . . . . . 6 ((𝐴𝑉𝐴 = 𝐵) → ({𝑥} ∈ (({𝐵} × tag 𝐶) “ {𝐴}) ↔ {𝑥} ∈ tag 𝐶))
65abbidv 2738 . . . . 5 ((𝐴𝑉𝐴 = 𝐵) → {𝑥 ∣ {𝑥} ∈ (({𝐵} × tag 𝐶) “ {𝐴})} = {𝑥 ∣ {𝑥} ∈ tag 𝐶})
7 df-bj-proj 32623 . . . . 5 (𝐴 Proj ({𝐵} × tag 𝐶)) = {𝑥 ∣ {𝑥} ∈ (({𝐵} × tag 𝐶) “ {𝐴})}
8 bj-taginv 32618 . . . . 5 𝐶 = {𝑥 ∣ {𝑥} ∈ tag 𝐶}
96, 7, 83eqtr4g 2680 . . . 4 ((𝐴𝑉𝐴 = 𝐵) → (𝐴 Proj ({𝐵} × tag 𝐶)) = 𝐶)
109ex 450 . . 3 (𝐴𝑉 → (𝐴 = 𝐵 → (𝐴 Proj ({𝐵} × tag 𝐶)) = 𝐶))
11 noel 3895 . . . . 5 ¬ {𝑥} ∈ ∅
127abeq2i 2732 . . . . . 6 (𝑥 ∈ (𝐴 Proj ({𝐵} × tag 𝐶)) ↔ {𝑥} ∈ (({𝐵} × tag 𝐶) “ {𝐴}))
13 elsni 4165 . . . . . . . . . 10 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
1413con3i 150 . . . . . . . . 9 𝐴 = 𝐵 → ¬ 𝐴 ∈ {𝐵})
15 df-nel 2894 . . . . . . . . 9 (𝐴 ∉ {𝐵} ↔ ¬ 𝐴 ∈ {𝐵})
1614, 15sylibr 224 . . . . . . . 8 𝐴 = 𝐵𝐴 ∉ {𝐵})
17 bj-xpima1sn 32587 . . . . . . . 8 (𝐴 ∉ {𝐵} → (({𝐵} × tag 𝐶) “ {𝐴}) = ∅)
1816, 17syl 17 . . . . . . 7 𝐴 = 𝐵 → (({𝐵} × tag 𝐶) “ {𝐴}) = ∅)
1918eleq2d 2684 . . . . . 6 𝐴 = 𝐵 → ({𝑥} ∈ (({𝐵} × tag 𝐶) “ {𝐴}) ↔ {𝑥} ∈ ∅))
2012, 19syl5bb 272 . . . . 5 𝐴 = 𝐵 → (𝑥 ∈ (𝐴 Proj ({𝐵} × tag 𝐶)) ↔ {𝑥} ∈ ∅))
2111, 20mtbiri 317 . . . 4 𝐴 = 𝐵 → ¬ 𝑥 ∈ (𝐴 Proj ({𝐵} × tag 𝐶)))
2221eq0rdv 3951 . . 3 𝐴 = 𝐵 → (𝐴 Proj ({𝐵} × tag 𝐶)) = ∅)
23 ifval 4099 . . 3 ((𝐴 Proj ({𝐵} × tag 𝐶)) = if(𝐴 = 𝐵, 𝐶, ∅) ↔ ((𝐴 = 𝐵 → (𝐴 Proj ({𝐵} × tag 𝐶)) = 𝐶) ∧ (¬ 𝐴 = 𝐵 → (𝐴 Proj ({𝐵} × tag 𝐶)) = ∅)))
2410, 22, 23sylanblrc 696 . 2 (𝐴𝑉 → (𝐴 Proj ({𝐵} × tag 𝐶)) = if(𝐴 = 𝐵, 𝐶, ∅))
25 eqcom 2628 . . 3 (𝐴 = 𝐵𝐵 = 𝐴)
26 ifbi 4079 . . 3 ((𝐴 = 𝐵𝐵 = 𝐴) → if(𝐴 = 𝐵, 𝐶, ∅) = if(𝐵 = 𝐴, 𝐶, ∅))
2725, 26ax-mp 5 . 2 if(𝐴 = 𝐵, 𝐶, ∅) = if(𝐵 = 𝐴, 𝐶, ∅)
2824, 27syl6eq 2671 1 (𝐴𝑉 → (𝐴 Proj ({𝐵} × tag 𝐶)) = if(𝐵 = 𝐴, 𝐶, ∅))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  {cab 2607   ∉ wnel 2893  ∅c0 3891  ifcif 4058  {csn 4148   × cxp 5072   “ cima 5077  tag bj-ctag 32606   Proj bj-cproj 32622 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-br 4614  df-opab 4674  df-xp 5080  df-rel 5081  df-cnv 5082  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-bj-sngl 32598  df-bj-tag 32607  df-bj-proj 32623 This theorem is referenced by:  bj-pr1val  32636  bj-pr2val  32650
 Copyright terms: Public domain W3C validator