Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj554 Structured version   Visualization version   GIF version

Theorem bnj554 30669
Description: Technical lemma for bnj852 30691. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj554.19 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
bnj554.20 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
bnj554.21 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj554.22 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
bnj554.23 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj554.24 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
Assertion
Ref Expression
bnj554 ((𝜂𝜁) → ((𝐺𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾))
Distinct variable groups:   𝑦,𝐺   𝑦,𝑖   𝑦,𝑝
Allowed substitution hints:   𝜂(𝑦,𝑖,𝑚,𝑛,𝑝)   𝜁(𝑦,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑦,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑦,𝑖,𝑚,𝑛,𝑝)   𝐺(𝑖,𝑚,𝑛,𝑝)   𝐾(𝑦,𝑖,𝑚,𝑛,𝑝)   𝐿(𝑦,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj554
StepHypRef Expression
1 bnj554.19 . . 3 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
21bnj1254 30580 . 2 (𝜂𝑚 = suc 𝑝)
3 bnj554.20 . . 3 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
43simp3bi 1076 . 2 (𝜁𝑚 = suc 𝑖)
5 simpr 477 . . 3 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → 𝑚 = suc 𝑖)
6 bnj551 30512 . . 3 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → 𝑝 = 𝑖)
7 fveq2 6150 . . . 4 (𝑚 = suc 𝑖 → (𝐺𝑚) = (𝐺‘suc 𝑖))
8 fveq2 6150 . . . . 5 (𝑝 = 𝑖 → (𝐺𝑝) = (𝐺𝑖))
9 iuneq1 4505 . . . . . 6 ((𝐺𝑝) = (𝐺𝑖) → 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
10 bnj554.24 . . . . . 6 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
11 bnj554.23 . . . . . 6 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
129, 10, 113eqtr4g 2685 . . . . 5 ((𝐺𝑝) = (𝐺𝑖) → 𝐿 = 𝐾)
138, 12syl 17 . . . 4 (𝑝 = 𝑖𝐿 = 𝐾)
147, 13eqeqan12d 2642 . . 3 ((𝑚 = suc 𝑖𝑝 = 𝑖) → ((𝐺𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾))
155, 6, 14syl2anc 692 . 2 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → ((𝐺𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾))
162, 4, 15syl2an 494 1 ((𝜂𝜁) → ((𝐺𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992   ciun 4490  suc csuc 5687  cfv 5850  ωcom 7013  w-bnj17 30451   predc-bnj14 30453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pr 4872  ax-un 6903  ax-reg 8442
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-eprel 4990  df-fr 5038  df-suc 5691  df-iota 5813  df-fv 5858  df-bnj17 30452
This theorem is referenced by:  bnj558  30672
  Copyright terms: Public domain W3C validator