Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj553 Structured version   Visualization version   GIF version

Theorem bnj553 31094
 Description: Technical lemma for bnj852 31117. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj553.1 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj553.2 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj553.3 𝐷 = (ω ∖ {∅})
bnj553.4 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
bnj553.5 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj553.6 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj553.7 𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
bnj553.8 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
bnj553.9 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
bnj553.10 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj553.11 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
bnj553.12 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
Assertion
Ref Expression
bnj553 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚𝑝 = 𝑖) → (𝐺𝑚) = 𝐿)
Distinct variable groups:   𝐴,𝑖,𝑝,𝑦   𝑦,𝐺   𝑅,𝑖,𝑝,𝑦   𝑓,𝑖,𝑝,𝑦   𝑖,𝑚,𝑝   𝑝,𝜑′
Allowed substitution hints:   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑥,𝑓,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑥,𝑓,𝑚,𝑛)   𝐺(𝑥,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐾(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐿(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj553
StepHypRef Expression
1 bnj553.12 . . . . 5 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
21bnj930 30966 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜎) → Fun 𝐺)
3 opex 4962 . . . . . . 7 𝑚, 𝐶⟩ ∈ V
43snid 4241 . . . . . 6 𝑚, 𝐶⟩ ∈ {⟨𝑚, 𝐶⟩}
5 elun2 3814 . . . . . 6 (⟨𝑚, 𝐶⟩ ∈ {⟨𝑚, 𝐶⟩} → ⟨𝑚, 𝐶⟩ ∈ (𝑓 ∪ {⟨𝑚, 𝐶⟩}))
64, 5ax-mp 5 . . . . 5 𝑚, 𝐶⟩ ∈ (𝑓 ∪ {⟨𝑚, 𝐶⟩})
7 bnj553.8 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
86, 7eleqtrri 2729 . . . 4 𝑚, 𝐶⟩ ∈ 𝐺
9 funopfv 6273 . . . 4 (Fun 𝐺 → (⟨𝑚, 𝐶⟩ ∈ 𝐺 → (𝐺𝑚) = 𝐶))
102, 8, 9mpisyl 21 . . 3 ((𝑅 FrSe 𝐴𝜏𝜎) → (𝐺𝑚) = 𝐶)
11103ad2ant1 1102 . 2 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚𝑝 = 𝑖) → (𝐺𝑚) = 𝐶)
12 fveq2 6229 . . . . . 6 (𝑝 = 𝑖 → (𝐺𝑝) = (𝐺𝑖))
1312bnj1113 30982 . . . . 5 (𝑝 = 𝑖 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
14 bnj553.11 . . . . 5 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
15 bnj553.10 . . . . 5 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
1613, 14, 153eqtr4g 2710 . . . 4 (𝑝 = 𝑖𝐿 = 𝐾)
17163ad2ant3 1104 . . 3 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚𝑝 = 𝑖) → 𝐿 = 𝐾)
18 bnj553.5 . . . . 5 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
19 bnj553.9 . . . . 5 𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)
20 bnj553.4 . . . . 5 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
2118, 19, 15, 20, 1bnj548 31093 . . . 4 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚) → 𝐵 = 𝐾)
22213adant3 1101 . . 3 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚𝑝 = 𝑖) → 𝐵 = 𝐾)
23 fveq2 6229 . . . . . 6 (𝑝 = 𝑖 → (𝑓𝑝) = (𝑓𝑖))
2423bnj1113 30982 . . . . 5 (𝑝 = 𝑖 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
25 bnj553.7 . . . . . . 7 𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)
2619, 25eqeq12i 2665 . . . . . 6 (𝐵 = 𝐶 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅))
27 eqcom 2658 . . . . . 6 ( 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ↔ 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
2826, 27bitri 264 . . . . 5 (𝐵 = 𝐶 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
2924, 28sylibr 224 . . . 4 (𝑝 = 𝑖𝐵 = 𝐶)
30293ad2ant3 1104 . . 3 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚𝑝 = 𝑖) → 𝐵 = 𝐶)
3117, 22, 303eqtr2rd 2692 . 2 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚𝑝 = 𝑖) → 𝐶 = 𝐿)
3211, 31eqtrd 2685 1 (((𝑅 FrSe 𝐴𝜏𝜎) ∧ 𝑖𝑚𝑝 = 𝑖) → (𝐺𝑚) = 𝐿)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∀wral 2941   ∖ cdif 3604   ∪ cun 3605  ∅c0 3948  {csn 4210  ⟨cop 4216  ∪ ciun 4552  suc csuc 5763  Fun wfun 5920   Fn wfn 5921  ‘cfv 5926  ωcom 7107   predc-bnj14 30882   FrSe w-bnj15 30886 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-res 5155  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934 This theorem is referenced by:  bnj557  31097
 Copyright terms: Public domain W3C validator