Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brprop Structured version   Visualization version   GIF version

Theorem brprop 30433
Description: Binary relation for a pair of ordered pairs. (Contributed by Thierry Arnoux, 24-Sep-2023.)
Hypotheses
Ref Expression
brprop.a (𝜑𝐴𝑉)
brprop.b (𝜑𝐵𝑊)
brprop.c (𝜑𝐶𝑉)
brprop.d (𝜑𝐷𝑊)
Assertion
Ref Expression
brprop (𝜑 → (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}𝑌 ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷))))

Proof of Theorem brprop
StepHypRef Expression
1 df-pr 4570 . . . 4 {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = ({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})
21breqi 5072 . . 3 (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}𝑌𝑋({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})𝑌)
3 brun 5117 . . 3 (𝑋({⟨𝐴, 𝐵⟩} ∪ {⟨𝐶, 𝐷⟩})𝑌 ↔ (𝑋{⟨𝐴, 𝐵⟩}𝑌𝑋{⟨𝐶, 𝐷⟩}𝑌))
42, 3bitri 277 . 2 (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}𝑌 ↔ (𝑋{⟨𝐴, 𝐵⟩}𝑌𝑋{⟨𝐶, 𝐷⟩}𝑌))
5 brprop.a . . . 4 (𝜑𝐴𝑉)
6 brprop.b . . . 4 (𝜑𝐵𝑊)
7 brsnop 30429 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ (𝑋 = 𝐴𝑌 = 𝐵)))
85, 6, 7syl2anc 586 . . 3 (𝜑 → (𝑋{⟨𝐴, 𝐵⟩}𝑌 ↔ (𝑋 = 𝐴𝑌 = 𝐵)))
9 brprop.c . . . 4 (𝜑𝐶𝑉)
10 brprop.d . . . 4 (𝜑𝐷𝑊)
11 brsnop 30429 . . . 4 ((𝐶𝑉𝐷𝑊) → (𝑋{⟨𝐶, 𝐷⟩}𝑌 ↔ (𝑋 = 𝐶𝑌 = 𝐷)))
129, 10, 11syl2anc 586 . . 3 (𝜑 → (𝑋{⟨𝐶, 𝐷⟩}𝑌 ↔ (𝑋 = 𝐶𝑌 = 𝐷)))
138, 12orbi12d 915 . 2 (𝜑 → ((𝑋{⟨𝐴, 𝐵⟩}𝑌𝑋{⟨𝐶, 𝐷⟩}𝑌) ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷))))
144, 13syl5bb 285 1 (𝜑 → (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩}𝑌 ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  cun 3934  {csn 4567  {cpr 4569  cop 4573   class class class wbr 5066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator