Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cossssid2 Structured version   Visualization version   GIF version

Theorem cossssid2 34541
Description: Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019.)
Assertion
Ref Expression
cossssid2 ( ≀ 𝑅 ⊆ I ↔ ∀𝑥𝑦(∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
Distinct variable group:   𝑢,𝑅,𝑥,𝑦

Proof of Theorem cossssid2
StepHypRef Expression
1 dfid3 5175 . . 3 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
21sseq2i 3771 . 2 ( ≀ 𝑅 ⊆ I ↔ ≀ 𝑅 ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦})
3 df-coss 34492 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
43sseq1i 3770 . 2 ( ≀ 𝑅 ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} ↔ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦})
5 ssopab2b 5152 . 2 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦} ↔ ∀𝑥𝑦(∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
62, 4, 53bitri 286 1 ( ≀ 𝑅 ⊆ I ↔ ∀𝑥𝑦(∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wal 1630   = wceq 1632  wex 1853  wss 3715   class class class wbr 4804  {copab 4864   I cid 5173  ccoss 34296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-opab 4865  df-id 5174  df-coss 34492
This theorem is referenced by:  cossssid3  34542
  Copyright terms: Public domain W3C validator