MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cuspcvg Structured version   Visualization version   GIF version

Theorem cuspcvg 22028
Description: In a complete uniform space, any Cauchy filter 𝐶 has a limit. (Contributed by Thierry Arnoux, 3-Dec-2017.)
Hypotheses
Ref Expression
cuspcvg.1 𝐵 = (Base‘𝑊)
cuspcvg.2 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
cuspcvg ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (CauFilu‘(UnifSt‘𝑊)) ∧ 𝐶 ∈ (Fil‘𝐵)) → (𝐽 fLim 𝐶) ≠ ∅)

Proof of Theorem cuspcvg
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2686 . . . . 5 (𝑐 = 𝐶 → (𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) ↔ 𝐶 ∈ (CauFilu‘(UnifSt‘𝑊))))
2 cuspcvg.2 . . . . . . . . 9 𝐽 = (TopOpen‘𝑊)
32eqcomi 2630 . . . . . . . 8 (TopOpen‘𝑊) = 𝐽
43a1i 11 . . . . . . 7 (𝑐 = 𝐶 → (TopOpen‘𝑊) = 𝐽)
5 id 22 . . . . . . 7 (𝑐 = 𝐶𝑐 = 𝐶)
64, 5oveq12d 6628 . . . . . 6 (𝑐 = 𝐶 → ((TopOpen‘𝑊) fLim 𝑐) = (𝐽 fLim 𝐶))
76neeq1d 2849 . . . . 5 (𝑐 = 𝐶 → (((TopOpen‘𝑊) fLim 𝑐) ≠ ∅ ↔ (𝐽 fLim 𝐶) ≠ ∅))
81, 7imbi12d 334 . . . 4 (𝑐 = 𝐶 → ((𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅) ↔ (𝐶 ∈ (CauFilu‘(UnifSt‘𝑊)) → (𝐽 fLim 𝐶) ≠ ∅)))
9 iscusp 22026 . . . . . 6 (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)))
109simprbi 480 . . . . 5 (𝑊 ∈ CUnifSp → ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))
1110adantr 481 . . . 4 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵)) → ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))
12 simpr 477 . . . . 5 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵)) → 𝐶 ∈ (Fil‘𝐵))
13 cuspcvg.1 . . . . . 6 𝐵 = (Base‘𝑊)
1413fveq2i 6156 . . . . 5 (Fil‘𝐵) = (Fil‘(Base‘𝑊))
1512, 14syl6eleq 2708 . . . 4 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵)) → 𝐶 ∈ (Fil‘(Base‘𝑊)))
168, 11, 15rspcdva 3304 . . 3 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵)) → (𝐶 ∈ (CauFilu‘(UnifSt‘𝑊)) → (𝐽 fLim 𝐶) ≠ ∅))
17163impia 1258 . 2 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵) ∧ 𝐶 ∈ (CauFilu‘(UnifSt‘𝑊))) → (𝐽 fLim 𝐶) ≠ ∅)
18173com23 1268 1 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (CauFilu‘(UnifSt‘𝑊)) ∧ 𝐶 ∈ (Fil‘𝐵)) → (𝐽 fLim 𝐶) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  c0 3896  cfv 5852  (class class class)co 6610  Basecbs 15792  TopOpenctopn 16014  Filcfil 21572   fLim cflim 21661  UnifStcuss 21980  UnifSpcusp 21981  CauFiluccfilu 22013  CUnifSpccusp 22024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-iota 5815  df-fv 5860  df-ov 6613  df-cusp 22025
This theorem is referenced by:  cnextucn  22030
  Copyright terms: Public domain W3C validator