Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cuspcvg Structured version   Visualization version   GIF version

Theorem cuspcvg 22028
 Description: In a complete uniform space, any Cauchy filter 𝐶 has a limit. (Contributed by Thierry Arnoux, 3-Dec-2017.)
Hypotheses
Ref Expression
cuspcvg.1 𝐵 = (Base‘𝑊)
cuspcvg.2 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
cuspcvg ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (CauFilu‘(UnifSt‘𝑊)) ∧ 𝐶 ∈ (Fil‘𝐵)) → (𝐽 fLim 𝐶) ≠ ∅)

Proof of Theorem cuspcvg
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2686 . . . . 5 (𝑐 = 𝐶 → (𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) ↔ 𝐶 ∈ (CauFilu‘(UnifSt‘𝑊))))
2 cuspcvg.2 . . . . . . . . 9 𝐽 = (TopOpen‘𝑊)
32eqcomi 2630 . . . . . . . 8 (TopOpen‘𝑊) = 𝐽
43a1i 11 . . . . . . 7 (𝑐 = 𝐶 → (TopOpen‘𝑊) = 𝐽)
5 id 22 . . . . . . 7 (𝑐 = 𝐶𝑐 = 𝐶)
64, 5oveq12d 6628 . . . . . 6 (𝑐 = 𝐶 → ((TopOpen‘𝑊) fLim 𝑐) = (𝐽 fLim 𝐶))
76neeq1d 2849 . . . . 5 (𝑐 = 𝐶 → (((TopOpen‘𝑊) fLim 𝑐) ≠ ∅ ↔ (𝐽 fLim 𝐶) ≠ ∅))
81, 7imbi12d 334 . . . 4 (𝑐 = 𝐶 → ((𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅) ↔ (𝐶 ∈ (CauFilu‘(UnifSt‘𝑊)) → (𝐽 fLim 𝐶) ≠ ∅)))
9 iscusp 22026 . . . . . 6 (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅)))
109simprbi 480 . . . . 5 (𝑊 ∈ CUnifSp → ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))
1110adantr 481 . . . 4 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵)) → ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))
12 simpr 477 . . . . 5 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵)) → 𝐶 ∈ (Fil‘𝐵))
13 cuspcvg.1 . . . . . 6 𝐵 = (Base‘𝑊)
1413fveq2i 6156 . . . . 5 (Fil‘𝐵) = (Fil‘(Base‘𝑊))
1512, 14syl6eleq 2708 . . . 4 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵)) → 𝐶 ∈ (Fil‘(Base‘𝑊)))
168, 11, 15rspcdva 3304 . . 3 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵)) → (𝐶 ∈ (CauFilu‘(UnifSt‘𝑊)) → (𝐽 fLim 𝐶) ≠ ∅))
17163impia 1258 . 2 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (Fil‘𝐵) ∧ 𝐶 ∈ (CauFilu‘(UnifSt‘𝑊))) → (𝐽 fLim 𝐶) ≠ ∅)
18173com23 1268 1 ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (CauFilu‘(UnifSt‘𝑊)) ∧ 𝐶 ∈ (Fil‘𝐵)) → (𝐽 fLim 𝐶) ≠ ∅)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907  ∅c0 3896  ‘cfv 5852  (class class class)co 6610  Basecbs 15792  TopOpenctopn 16014  Filcfil 21572   fLim cflim 21661  UnifStcuss 21980  UnifSpcusp 21981  CauFiluccfilu 22013  CUnifSpccusp 22024 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-iota 5815  df-fv 5860  df-ov 6613  df-cusp 22025 This theorem is referenced by:  cnextucn  22030
 Copyright terms: Public domain W3C validator