MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfid2 Structured version   Visualization version   GIF version

Theorem dfid2 5017
Description: Alternate definition of the identity relation. (Contributed by NM, 15-Mar-2007.)
Assertion
Ref Expression
dfid2 I = {⟨𝑥, 𝑥⟩ ∣ 𝑥 = 𝑥}

Proof of Theorem dfid2
StepHypRef Expression
1 dfid3 5015 1 I = {⟨𝑥, 𝑥⟩ ∣ 𝑥 = 𝑥}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1481  {copab 4703   I cid 5013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-opab 4704  df-id 5014
This theorem is referenced by:  fsplit  7267
  Copyright terms: Public domain W3C validator