MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfmpt3 Structured version   Visualization version   GIF version

Theorem dfmpt3 5913
Description: Alternate definition for the "maps to" notation df-mpt 4639. (Contributed by Mario Carneiro, 30-Dec-2016.)
Assertion
Ref Expression
dfmpt3 (𝑥𝐴𝐵) = 𝑥𝐴 ({𝑥} × {𝐵})

Proof of Theorem dfmpt3
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mpt 4639 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
2 velsn 4140 . . . . . . 7 (𝑦 ∈ {𝐵} ↔ 𝑦 = 𝐵)
32anbi2i 725 . . . . . 6 ((𝑥𝐴𝑦 ∈ {𝐵}) ↔ (𝑥𝐴𝑦 = 𝐵))
43anbi2i 725 . . . . 5 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 ∈ {𝐵})) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 = 𝐵)))
542exbii 1764 . . . 4 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 ∈ {𝐵})) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 = 𝐵)))
6 eliunxp 5169 . . . 4 (𝑧 𝑥𝐴 ({𝑥} × {𝐵}) ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 ∈ {𝐵})))
7 elopab 4898 . . . 4 (𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)} ↔ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦 = 𝐵)))
85, 6, 73bitr4i 290 . . 3 (𝑧 𝑥𝐴 ({𝑥} × {𝐵}) ↔ 𝑧 ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)})
98eqriv 2606 . 2 𝑥𝐴 ({𝑥} × {𝐵}) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
101, 9eqtr4i 2634 1 (𝑥𝐴𝐵) = 𝑥𝐴 ({𝑥} × {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wa 382   = wceq 1474  wex 1694  wcel 1976  {csn 4124  cop 4130   ciun 4449  {copab 4636  cmpt 4637   × cxp 5026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pr 4828
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-iun 4451  df-opab 4638  df-mpt 4639  df-xp 5034  df-rel 5035
This theorem is referenced by:  dfmpt  6301  taylpfval  23840  indval2  29210
  Copyright terms: Public domain W3C validator