Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfnelbr2 Structured version   Visualization version   GIF version

Theorem dfnelbr2 43562
Description: Alternate definition of the negated membership as binary relation. (Proposed by BJ, 27-Dec-2021.) (Contributed by AV, 27-Dec-2021.)
Assertion
Ref Expression
dfnelbr2 _∉ = ((V × V) ∖ E )

Proof of Theorem dfnelbr2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difopab 5688 . 2 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥𝑦)}
2 df-xp 5547 . . 3 (V × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
3 df-eprel 5451 . . 3 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
42, 3difeq12i 4085 . 2 ((V × V) ∖ E ) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦})
5 df-nelbr 43561 . . 3 _∉ = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝑥𝑦}
6 vex 3489 . . . . . 6 𝑥 ∈ V
7 vex 3489 . . . . . 6 𝑦 ∈ V
86, 7pm3.2i 473 . . . . 5 (𝑥 ∈ V ∧ 𝑦 ∈ V)
98biantrur 533 . . . 4 𝑥𝑦 ↔ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥𝑦))
109opabbii 5119 . . 3 {⟨𝑥, 𝑦⟩ ∣ ¬ 𝑥𝑦} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥𝑦)}
115, 10eqtri 2844 . 2 _∉ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥𝑦)}
121, 4, 113eqtr4ri 2855 1 _∉ = ((V × V) ∖ E )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398   = wceq 1537  wcel 2114  Vcvv 3486  cdif 3921  {copab 5114   E cep 5450   × cxp 5539   _∉ cnelbr 43560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pr 5316
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3488  df-sbc 3764  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-nul 4280  df-if 4454  df-sn 4554  df-pr 4556  df-op 4560  df-opab 5115  df-eprel 5451  df-xp 5547  df-rel 5548  df-nelbr 43561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator