Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dford4 Structured version   Visualization version   GIF version

Theorem dford4 37076
Description: dford3 37075 expressed in primitives to demonstrate shortness. (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
dford4 (Ord 𝑁 ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
Distinct variable group:   𝑎,𝑏,𝑐,𝑁

Proof of Theorem dford4
StepHypRef Expression
1 dford3 37075 . 2 (Ord 𝑁 ↔ (Tr 𝑁 ∧ ∀𝑎𝑁 Tr 𝑎))
2 dftr2 4714 . . . . 5 (Tr 𝑁 ↔ ∀𝑏𝑎((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
3 19.3v 1894 . . . . . . . 8 (∀𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ↔ ((𝑎𝑁𝑏𝑎) → 𝑏𝑁))
4 ancom 466 . . . . . . . . 9 ((𝑎𝑁𝑏𝑎) ↔ (𝑏𝑎𝑎𝑁))
54imbi1i 339 . . . . . . . 8 (((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ↔ ((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
63, 5bitri 264 . . . . . . 7 (∀𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ↔ ((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
762albii 1745 . . . . . 6 (∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ↔ ∀𝑎𝑏((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
8 alcom 2034 . . . . . 6 (∀𝑎𝑏((𝑏𝑎𝑎𝑁) → 𝑏𝑁) ↔ ∀𝑏𝑎((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
97, 8bitri 264 . . . . 5 (∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ↔ ∀𝑏𝑎((𝑏𝑎𝑎𝑁) → 𝑏𝑁))
102, 9bitr4i 267 . . . 4 (Tr 𝑁 ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁))
11 df-ral 2912 . . . . 5 (∀𝑎𝑁 Tr 𝑎 ↔ ∀𝑎(𝑎𝑁 → Tr 𝑎))
12 dftr2 4714 . . . . . . . . 9 (Tr 𝑎 ↔ ∀𝑐𝑏((𝑐𝑏𝑏𝑎) → 𝑐𝑎))
1312imbi2i 326 . . . . . . . 8 ((𝑎𝑁 → Tr 𝑎) ↔ (𝑎𝑁 → ∀𝑐𝑏((𝑐𝑏𝑏𝑎) → 𝑐𝑎)))
14 nfv 1840 . . . . . . . . 9 𝑐 𝑎𝑁
15 nfv 1840 . . . . . . . . 9 𝑏 𝑎𝑁
1614, 1519.21-2 2076 . . . . . . . 8 (∀𝑐𝑏(𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)) ↔ (𝑎𝑁 → ∀𝑐𝑏((𝑐𝑏𝑏𝑎) → 𝑐𝑎)))
1713, 16bitr4i 267 . . . . . . 7 ((𝑎𝑁 → Tr 𝑎) ↔ ∀𝑐𝑏(𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)))
18 impexp 462 . . . . . . . . . 10 (((𝑎𝑁 ∧ (𝑐𝑏𝑏𝑎)) → 𝑐𝑎) ↔ (𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)))
19 ancom 466 . . . . . . . . . . . . 13 ((𝑐𝑏𝑏𝑎) ↔ (𝑏𝑎𝑐𝑏))
2019anbi2i 729 . . . . . . . . . . . 12 ((𝑎𝑁 ∧ (𝑐𝑏𝑏𝑎)) ↔ (𝑎𝑁 ∧ (𝑏𝑎𝑐𝑏)))
21 anass 680 . . . . . . . . . . . 12 (((𝑎𝑁𝑏𝑎) ∧ 𝑐𝑏) ↔ (𝑎𝑁 ∧ (𝑏𝑎𝑐𝑏)))
2220, 21bitr4i 267 . . . . . . . . . . 11 ((𝑎𝑁 ∧ (𝑐𝑏𝑏𝑎)) ↔ ((𝑎𝑁𝑏𝑎) ∧ 𝑐𝑏))
2322imbi1i 339 . . . . . . . . . 10 (((𝑎𝑁 ∧ (𝑐𝑏𝑏𝑎)) → 𝑐𝑎) ↔ (((𝑎𝑁𝑏𝑎) ∧ 𝑐𝑏) → 𝑐𝑎))
2418, 23bitr3i 266 . . . . . . . . 9 ((𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)) ↔ (((𝑎𝑁𝑏𝑎) ∧ 𝑐𝑏) → 𝑐𝑎))
25 impexp 462 . . . . . . . . 9 ((((𝑎𝑁𝑏𝑎) ∧ 𝑐𝑏) → 𝑐𝑎) ↔ ((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
2624, 25bitri 264 . . . . . . . 8 ((𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)) ↔ ((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
27262albii 1745 . . . . . . 7 (∀𝑐𝑏(𝑎𝑁 → ((𝑐𝑏𝑏𝑎) → 𝑐𝑎)) ↔ ∀𝑐𝑏((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
28 alcom 2034 . . . . . . 7 (∀𝑐𝑏((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)) ↔ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
2917, 27, 283bitri 286 . . . . . 6 ((𝑎𝑁 → Tr 𝑎) ↔ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
3029albii 1744 . . . . 5 (∀𝑎(𝑎𝑁 → Tr 𝑎) ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
3111, 30bitri 264 . . . 4 (∀𝑎𝑁 Tr 𝑎 ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎)))
3210, 31anbi12i 732 . . 3 ((Tr 𝑁 ∧ ∀𝑎𝑁 Tr 𝑎) ↔ (∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))))
33 19.26 1795 . . 3 (∀𝑎(∀𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ (∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))))
3432, 33bitr4i 267 . 2 ((Tr 𝑁 ∧ ∀𝑎𝑁 Tr 𝑎) ↔ ∀𝑎(∀𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))))
35 19.26-2 1796 . . . 4 (∀𝑏𝑐(((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ (∀𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))))
36 pm4.76 909 . . . . 5 ((((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ ((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
37362albii 1745 . . . 4 (∀𝑏𝑐(((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
3835, 37bitr3i 266 . . 3 ((∀𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
3938albii 1744 . 2 (∀𝑎(∀𝑏𝑐((𝑎𝑁𝑏𝑎) → 𝑏𝑁) ∧ ∀𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑐𝑏𝑐𝑎))) ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
401, 34, 393bitri 286 1 (Ord 𝑁 ↔ ∀𝑎𝑏𝑐((𝑎𝑁𝑏𝑎) → (𝑏𝑁 ∧ (𝑐𝑏𝑐𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1478  wcel 1987  wral 2907  Tr wtr 4712  Ord word 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867  ax-un 6902  ax-reg 8441
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-tr 4713  df-eprel 4985  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-ord 5685  df-on 5686  df-suc 5688
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator