MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnb Structured version   Visualization version   GIF version

Theorem difsnb 4739
Description: (𝐵 ∖ {𝐴}) equals 𝐵 if and only if 𝐴 is not a member of 𝐵. Generalization of difsn 4731. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difsnb 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵)

Proof of Theorem difsnb
StepHypRef Expression
1 difsn 4731 . 2 𝐴𝐵 → (𝐵 ∖ {𝐴}) = 𝐵)
2 neldifsnd 4726 . . . . 5 (𝐴𝐵 → ¬ 𝐴 ∈ (𝐵 ∖ {𝐴}))
3 nelne1 3113 . . . . 5 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ (𝐵 ∖ {𝐴})) → 𝐵 ≠ (𝐵 ∖ {𝐴}))
42, 3mpdan 685 . . . 4 (𝐴𝐵𝐵 ≠ (𝐵 ∖ {𝐴}))
54necomd 3071 . . 3 (𝐴𝐵 → (𝐵 ∖ {𝐴}) ≠ 𝐵)
65necon2bi 3046 . 2 ((𝐵 ∖ {𝐴}) = 𝐵 → ¬ 𝐴𝐵)
71, 6impbii 211 1 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208   = wceq 1537  wcel 2114  wne 3016  cdif 3933  {csn 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-v 3496  df-dif 3939  df-sn 4568
This theorem is referenced by:  difsnpss  4740  incexclem  15191  mrieqv2d  16910  mreexmrid  16914  mreexexlem2d  16916  mreexexlem4d  16918  acsfiindd  17787
  Copyright terms: Public domain W3C validator