MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difxp1 Structured version   Visualization version   GIF version

Theorem difxp1 5461
Description: Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
difxp1 ((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∖ (𝐵 × 𝐶))

Proof of Theorem difxp1
StepHypRef Expression
1 difxp 5460 . 2 ((𝐴 × 𝐶) ∖ (𝐵 × 𝐶)) = (((𝐴𝐵) × 𝐶) ∪ (𝐴 × (𝐶𝐶)))
2 difid 3898 . . . . 5 (𝐶𝐶) = ∅
32xpeq2i 5047 . . . 4 (𝐴 × (𝐶𝐶)) = (𝐴 × ∅)
4 xp0 5454 . . . 4 (𝐴 × ∅) = ∅
53, 4eqtri 2628 . . 3 (𝐴 × (𝐶𝐶)) = ∅
65uneq2i 3722 . 2 (((𝐴𝐵) × 𝐶) ∪ (𝐴 × (𝐶𝐶))) = (((𝐴𝐵) × 𝐶) ∪ ∅)
7 un0 3915 . 2 (((𝐴𝐵) × 𝐶) ∪ ∅) = ((𝐴𝐵) × 𝐶)
81, 6, 73eqtrri 2633 1 ((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∖ (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  cdif 3533  cun 3534  c0 3870   × cxp 5023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pr 4825
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ral 2897  df-rex 2898  df-rab 2901  df-v 3171  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-sn 4122  df-pr 4124  df-op 4128  df-br 4575  df-opab 4635  df-xp 5031  df-rel 5032  df-cnv 5033
This theorem is referenced by:  sxbrsigalem2  29478
  Copyright terms: Public domain W3C validator