![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjord | Structured version Visualization version GIF version |
Description: Conditions for a collection of sets 𝐴(𝑎) for 𝑎 ∈ 𝑉 to be disjoint. (Contributed by AV, 9-Jan-2022.) |
Ref | Expression |
---|---|
disjord.1 | ⊢ (𝑎 = 𝑏 → 𝐴 = 𝐵) |
disjord.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑎 = 𝑏) |
Ref | Expression |
---|---|
disjord | ⊢ (𝜑 → Disj 𝑎 ∈ 𝑉 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 399 | . . . . . 6 ⊢ (𝑎 = 𝑏 → (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅)) | |
2 | 1 | a1d 25 | . . . . 5 ⊢ (𝑎 = 𝑏 → (𝜑 → (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅))) |
3 | disjord.2 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑎 = 𝑏) | |
4 | 3 | 3expia 1115 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 → 𝑎 = 𝑏)) |
5 | 4 | con3d 148 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (¬ 𝑎 = 𝑏 → ¬ 𝑥 ∈ 𝐵)) |
6 | 5 | impancom 455 | . . . . . . . . 9 ⊢ ((𝜑 ∧ ¬ 𝑎 = 𝑏) → (𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) |
7 | 6 | ralrimiv 3103 | . . . . . . . 8 ⊢ ((𝜑 ∧ ¬ 𝑎 = 𝑏) → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) |
8 | disj 4160 | . . . . . . . 8 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | |
9 | 7, 8 | sylibr 224 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑎 = 𝑏) → (𝐴 ∩ 𝐵) = ∅) |
10 | 9 | olcd 407 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ 𝑎 = 𝑏) → (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅)) |
11 | 10 | expcom 450 | . . . . 5 ⊢ (¬ 𝑎 = 𝑏 → (𝜑 → (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅))) |
12 | 2, 11 | pm2.61i 176 | . . . 4 ⊢ (𝜑 → (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅)) |
13 | 12 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) → (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅)) |
14 | 13 | ralrimivva 3109 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅)) |
15 | disjord.1 | . . 3 ⊢ (𝑎 = 𝑏 → 𝐴 = 𝐵) | |
16 | 15 | disjor 4786 | . 2 ⊢ (Disj 𝑎 ∈ 𝑉 𝐴 ↔ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 (𝑎 = 𝑏 ∨ (𝐴 ∩ 𝐵) = ∅)) |
17 | 14, 16 | sylibr 224 | 1 ⊢ (𝜑 → Disj 𝑎 ∈ 𝑉 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 382 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∩ cin 3714 ∅c0 4058 Disj wdisj 4772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rmo 3058 df-v 3342 df-dif 3718 df-in 3722 df-nul 4059 df-disj 4773 |
This theorem is referenced by: 2wspdisj 27084 |
Copyright terms: Public domain | W3C validator |