Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  drngoi Structured version   Visualization version   GIF version

Theorem drngoi 33403
Description: The properties of a division ring. (Contributed by NM, 4-Apr-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
drngi.1 𝐺 = (1st𝑅)
drngi.2 𝐻 = (2nd𝑅)
drngi.3 𝑋 = ran 𝐺
drngi.4 𝑍 = (GId‘𝐺)
Assertion
Ref Expression
drngoi (𝑅 ∈ DivRingOps → (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))

Proof of Theorem drngoi
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4372 . . . . . 6 (𝑔 = (1st𝑅) → ⟨𝑔, ⟩ = ⟨(1st𝑅), ⟩)
21eleq1d 2683 . . . . 5 (𝑔 = (1st𝑅) → (⟨𝑔, ⟩ ∈ RingOps ↔ ⟨(1st𝑅), ⟩ ∈ RingOps))
3 id 22 . . . . . . . . . . . 12 (𝑔 = (1st𝑅) → 𝑔 = (1st𝑅))
4 drngi.1 . . . . . . . . . . . 12 𝐺 = (1st𝑅)
53, 4syl6eqr 2673 . . . . . . . . . . 11 (𝑔 = (1st𝑅) → 𝑔 = 𝐺)
65rneqd 5315 . . . . . . . . . 10 (𝑔 = (1st𝑅) → ran 𝑔 = ran 𝐺)
7 drngi.3 . . . . . . . . . 10 𝑋 = ran 𝐺
86, 7syl6eqr 2673 . . . . . . . . 9 (𝑔 = (1st𝑅) → ran 𝑔 = 𝑋)
95fveq2d 6154 . . . . . . . . . . 11 (𝑔 = (1st𝑅) → (GId‘𝑔) = (GId‘𝐺))
10 drngi.4 . . . . . . . . . . 11 𝑍 = (GId‘𝐺)
119, 10syl6eqr 2673 . . . . . . . . . 10 (𝑔 = (1st𝑅) → (GId‘𝑔) = 𝑍)
1211sneqd 4162 . . . . . . . . 9 (𝑔 = (1st𝑅) → {(GId‘𝑔)} = {𝑍})
138, 12difeq12d 3709 . . . . . . . 8 (𝑔 = (1st𝑅) → (ran 𝑔 ∖ {(GId‘𝑔)}) = (𝑋 ∖ {𝑍}))
1413sqxpeqd 5103 . . . . . . 7 (𝑔 = (1st𝑅) → ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)})) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))
1514reseq2d 5358 . . . . . 6 (𝑔 = (1st𝑅) → ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) = ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
1615eleq1d 2683 . . . . 5 (𝑔 = (1st𝑅) → (( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp ↔ ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
172, 16anbi12d 746 . . . 4 (𝑔 = (1st𝑅) → ((⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp) ↔ (⟨(1st𝑅), ⟩ ∈ RingOps ∧ ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
18 opeq2 4373 . . . . . . 7 ( = (2nd𝑅) → ⟨(1st𝑅), ⟩ = ⟨(1st𝑅), (2nd𝑅)⟩)
1918eleq1d 2683 . . . . . 6 ( = (2nd𝑅) → (⟨(1st𝑅), ⟩ ∈ RingOps ↔ ⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps))
2019anbi1d 740 . . . . 5 ( = (2nd𝑅) → ((⟨(1st𝑅), ⟩ ∈ RingOps ∧ ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps ∧ ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
21 id 22 . . . . . . . . 9 ( = (2nd𝑅) → = (2nd𝑅))
22 drngi.2 . . . . . . . . 9 𝐻 = (2nd𝑅)
2321, 22syl6reqr 2674 . . . . . . . 8 ( = (2nd𝑅) → 𝐻 = )
2423reseq1d 5357 . . . . . . 7 ( = (2nd𝑅) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))
2524eleq1d 2683 . . . . . 6 ( = (2nd𝑅) → ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ↔ ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
2625anbi2d 739 . . . . 5 ( = (2nd𝑅) → ((⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps ∧ ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
2720, 26bitr4d 271 . . . 4 ( = (2nd𝑅) → ((⟨(1st𝑅), ⟩ ∈ RingOps ∧ ( ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
2817, 27elopabi 7179 . . 3 (𝑅 ∈ {⟨𝑔, ⟩ ∣ (⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)} → (⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
29 df-drngo 33401 . . 3 DivRingOps = {⟨𝑔, ⟩ ∣ (⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)}
3028, 29eleq2s 2716 . 2 (𝑅 ∈ DivRingOps → (⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
3129relopabi 5207 . . . . 5 Rel DivRingOps
32 1st2nd 7162 . . . . 5 ((Rel DivRingOps ∧ 𝑅 ∈ DivRingOps) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
3331, 32mpan 705 . . . 4 (𝑅 ∈ DivRingOps → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
3433eleq1d 2683 . . 3 (𝑅 ∈ DivRingOps → (𝑅 ∈ RingOps ↔ ⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps))
3534anbi1d 740 . 2 (𝑅 ∈ DivRingOps → ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (⟨(1st𝑅), (2nd𝑅)⟩ ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)))
3630, 35mpbird 247 1 (𝑅 ∈ DivRingOps → (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  cdif 3553  {csn 4150  cop 4156  {copab 4674   × cxp 5074  ran crn 5077  cres 5078  Rel wrel 5081  cfv 5849  1st c1st 7114  2nd c2nd 7115  GrpOpcgr 27204  GIdcgi 27205  RingOpscrngo 33346  DivRingOpscdrng 33400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3419  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-iota 5812  df-fun 5851  df-fv 5857  df-1st 7116  df-2nd 7117  df-drngo 33401
This theorem is referenced by:  dvrunz  33406  fldcrng  33456
  Copyright terms: Public domain W3C validator