Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dropab2 Structured version   Visualization version   GIF version

Theorem dropab2 40800
Description: Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
dropab2 (∀𝑥 𝑥 = 𝑦 → {⟨𝑧, 𝑥⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜑})

Proof of Theorem dropab2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 opeq2 4804 . . . . . . . 8 (𝑥 = 𝑦 → ⟨𝑧, 𝑥⟩ = ⟨𝑧, 𝑦⟩)
21sps 2184 . . . . . . 7 (∀𝑥 𝑥 = 𝑦 → ⟨𝑧, 𝑥⟩ = ⟨𝑧, 𝑦⟩)
32eqeq2d 2832 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → (𝑤 = ⟨𝑧, 𝑥⟩ ↔ 𝑤 = ⟨𝑧, 𝑦⟩))
43anbi1d 631 . . . . 5 (∀𝑥 𝑥 = 𝑦 → ((𝑤 = ⟨𝑧, 𝑥⟩ ∧ 𝜑) ↔ (𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜑)))
54drex1 2463 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑤 = ⟨𝑧, 𝑥⟩ ∧ 𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜑)))
65drex2 2464 . . 3 (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝑥(𝑤 = ⟨𝑧, 𝑥⟩ ∧ 𝜑) ↔ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜑)))
76abbidv 2885 . 2 (∀𝑥 𝑥 = 𝑦 → {𝑤 ∣ ∃𝑧𝑥(𝑤 = ⟨𝑧, 𝑥⟩ ∧ 𝜑)} = {𝑤 ∣ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜑)})
8 df-opab 5129 . 2 {⟨𝑧, 𝑥⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑧𝑥(𝑤 = ⟨𝑧, 𝑥⟩ ∧ 𝜑)}
9 df-opab 5129 . 2 {⟨𝑧, 𝑦⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑧𝑦(𝑤 = ⟨𝑧, 𝑦⟩ ∧ 𝜑)}
107, 8, 93eqtr4g 2881 1 (∀𝑥 𝑥 = 𝑦 → {⟨𝑧, 𝑥⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wal 1535   = wceq 1537  wex 1780  {cab 2799  cop 4573  {copab 5128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-13 2390  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-opab 5129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator