MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drsbn0 Structured version   Visualization version   GIF version

Theorem drsbn0 17547
Description: The base of a directed set is not empty. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypothesis
Ref Expression
drsbn0.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
drsbn0 (𝐾 ∈ Dirset → 𝐵 ≠ ∅)

Proof of Theorem drsbn0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 drsbn0.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2821 . . 3 (le‘𝐾) = (le‘𝐾)
31, 2isdrs 17544 . 2 (𝐾 ∈ Dirset ↔ (𝐾 ∈ Proset ∧ 𝐵 ≠ ∅ ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥(le‘𝐾)𝑧𝑦(le‘𝐾)𝑧)))
43simp2bi 1142 1 (𝐾 ∈ Dirset → 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  c0 4291   class class class wbr 5066  cfv 6355  Basecbs 16483  lecple 16572   Proset cproset 17536  Dirsetcdrs 17537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-nul 5210
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-iota 6314  df-fv 6363  df-drs 17539
This theorem is referenced by:  drsdirfi  17548  isipodrs  17771
  Copyright terms: Public domain W3C validator