MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dtru Structured version   Visualization version   GIF version

Theorem dtru 5271
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). Note that we may not substitute the same variable for both 𝑥 and 𝑦 (as indicated by the distinct variable requirement), for otherwise we would contradict stdpc6 2035.

This theorem is proved directly from set theory axioms (no set theory definitions) and does not use ax-ext 2793 or ax-sep 5203. See dtruALT 5289 for a shorter proof using these axioms.

The proof makes use of dummy variables 𝑧 and 𝑤 which do not appear in the final theorem. They must be distinct from each other and from 𝑥 and 𝑦. In other words, if we were to substitute 𝑥 for 𝑧 throughout the proof, the proof would fail. (Contributed by NM, 7-Nov-2006.) Avoid ax-13 2390. (Revised by Gino Giotto, 5-Sep-2023.)

Assertion
Ref Expression
dtru ¬ ∀𝑥 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem dtru
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 el 5270 . . . 4 𝑤 𝑥𝑤
2 ax-nul 5210 . . . . 5 𝑧𝑥 ¬ 𝑥𝑧
3 sp 2182 . . . . 5 (∀𝑥 ¬ 𝑥𝑧 → ¬ 𝑥𝑧)
42, 3eximii 1837 . . . 4 𝑧 ¬ 𝑥𝑧
5 exdistrv 1956 . . . 4 (∃𝑤𝑧(𝑥𝑤 ∧ ¬ 𝑥𝑧) ↔ (∃𝑤 𝑥𝑤 ∧ ∃𝑧 ¬ 𝑥𝑧))
61, 4, 5mpbir2an 709 . . 3 𝑤𝑧(𝑥𝑤 ∧ ¬ 𝑥𝑧)
7 ax9v2 2127 . . . . . 6 (𝑤 = 𝑧 → (𝑥𝑤𝑥𝑧))
87com12 32 . . . . 5 (𝑥𝑤 → (𝑤 = 𝑧𝑥𝑧))
98con3dimp 411 . . . 4 ((𝑥𝑤 ∧ ¬ 𝑥𝑧) → ¬ 𝑤 = 𝑧)
1092eximi 1836 . . 3 (∃𝑤𝑧(𝑥𝑤 ∧ ¬ 𝑥𝑧) → ∃𝑤𝑧 ¬ 𝑤 = 𝑧)
11 equequ2 2033 . . . . . . 7 (𝑧 = 𝑦 → (𝑤 = 𝑧𝑤 = 𝑦))
1211notbid 320 . . . . . 6 (𝑧 = 𝑦 → (¬ 𝑤 = 𝑧 ↔ ¬ 𝑤 = 𝑦))
13 nfv 1915 . . . . . . 7 𝑥 ¬ 𝑤 = 𝑦
14 ax7v1 2017 . . . . . . . 8 (𝑥 = 𝑤 → (𝑥 = 𝑦𝑤 = 𝑦))
1514con3d 155 . . . . . . 7 (𝑥 = 𝑤 → (¬ 𝑤 = 𝑦 → ¬ 𝑥 = 𝑦))
1613, 15spimefv 2198 . . . . . 6 𝑤 = 𝑦 → ∃𝑥 ¬ 𝑥 = 𝑦)
1712, 16syl6bi 255 . . . . 5 (𝑧 = 𝑦 → (¬ 𝑤 = 𝑧 → ∃𝑥 ¬ 𝑥 = 𝑦))
18 nfv 1915 . . . . . . 7 𝑥 ¬ 𝑧 = 𝑦
19 ax7v1 2017 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = 𝑦𝑧 = 𝑦))
2019con3d 155 . . . . . . 7 (𝑥 = 𝑧 → (¬ 𝑧 = 𝑦 → ¬ 𝑥 = 𝑦))
2118, 20spimefv 2198 . . . . . 6 𝑧 = 𝑦 → ∃𝑥 ¬ 𝑥 = 𝑦)
2221a1d 25 . . . . 5 𝑧 = 𝑦 → (¬ 𝑤 = 𝑧 → ∃𝑥 ¬ 𝑥 = 𝑦))
2317, 22pm2.61i 184 . . . 4 𝑤 = 𝑧 → ∃𝑥 ¬ 𝑥 = 𝑦)
2423exlimivv 1933 . . 3 (∃𝑤𝑧 ¬ 𝑤 = 𝑧 → ∃𝑥 ¬ 𝑥 = 𝑦)
256, 10, 24mp2b 10 . 2 𝑥 ¬ 𝑥 = 𝑦
26 exnal 1827 . 2 (∃𝑥 ¬ 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦)
2725, 26mpbi 232 1 ¬ ∀𝑥 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wal 1535  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-12 2177  ax-nul 5210  ax-pow 5266
This theorem depends on definitions:  df-bi 209  df-an 399  df-tru 1540  df-ex 1781  df-nf 1785
This theorem is referenced by:  dtrucor  5272  dvdemo1  5274  nfnid  5276  axc16b  5290  eunex  5291  brprcneu  6662  zfcndpow  10038
  Copyright terms: Public domain W3C validator