![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ecres2 | Structured version Visualization version GIF version |
Description: The restricted coset of 𝐵 when 𝐵 is an element of the restriction. (Contributed by Peter Mazsa, 16-Oct-2018.) |
Ref | Expression |
---|---|
ecres2 | ⊢ (𝐵 ∈ 𝐴 → [𝐵](𝑅 ↾ 𝐴) = [𝐵]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elecres 34364 | . . . . 5 ⊢ (𝑦 ∈ V → (𝑦 ∈ [𝐵](𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦))) | |
2 | 1 | elv 34307 | . . . 4 ⊢ (𝑦 ∈ [𝐵](𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦)) |
3 | 2 | baib 982 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝑦 ∈ [𝐵](𝑅 ↾ 𝐴) ↔ 𝐵𝑅𝑦)) |
4 | 3 | abbi2dv 2878 | . 2 ⊢ (𝐵 ∈ 𝐴 → [𝐵](𝑅 ↾ 𝐴) = {𝑦 ∣ 𝐵𝑅𝑦}) |
5 | dfec2 7912 | . 2 ⊢ (𝐵 ∈ 𝐴 → [𝐵]𝑅 = {𝑦 ∣ 𝐵𝑅𝑦}) | |
6 | 4, 5 | eqtr4d 2795 | 1 ⊢ (𝐵 ∈ 𝐴 → [𝐵](𝑅 ↾ 𝐴) = [𝐵]𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1630 ∈ wcel 2137 {cab 2744 Vcvv 3338 class class class wbr 4802 ↾ cres 5266 [cec 7907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pr 5053 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ral 3053 df-rex 3054 df-rab 3057 df-v 3340 df-sbc 3575 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-sn 4320 df-pr 4322 df-op 4326 df-br 4803 df-opab 4863 df-xp 5270 df-rel 5271 df-cnv 5272 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-ec 7911 |
This theorem is referenced by: eccnvepres2 34371 eldmqsres 34373 qsresid 34418 ecex2 34422 |
Copyright terms: Public domain | W3C validator |