Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  edgupgr Structured version   Visualization version   GIF version

Theorem edgupgr 25924
 Description: Properties of an edge of a pseudograph. (Contributed by AV, 8-Nov-2020.)
Assertion
Ref Expression
edgupgr ((𝐺 ∈ UPGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (#‘𝐸) ≤ 2))

Proof of Theorem edgupgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 edgval 25841 . . . 4 (𝐺 ∈ UPGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
21eleq2d 2684 . . 3 (𝐺 ∈ UPGraph → (𝐸 ∈ (Edg‘𝐺) ↔ 𝐸 ∈ ran (iEdg‘𝐺)))
3 eqid 2621 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
4 eqid 2621 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
53, 4upgrf 25877 . . . . . 6 (𝐺 ∈ UPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
6 frn 6010 . . . . . 6 ((iEdg‘𝐺):dom (iEdg‘𝐺)⟶{𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2} → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
75, 6syl 17 . . . . 5 (𝐺 ∈ UPGraph → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2})
87sseld 3582 . . . 4 (𝐺 ∈ UPGraph → (𝐸 ∈ ran (iEdg‘𝐺) → 𝐸 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2}))
9 fveq2 6148 . . . . . . 7 (𝑥 = 𝐸 → (#‘𝑥) = (#‘𝐸))
109breq1d 4623 . . . . . 6 (𝑥 = 𝐸 → ((#‘𝑥) ≤ 2 ↔ (#‘𝐸) ≤ 2))
1110elrab 3346 . . . . 5 (𝐸 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2} ↔ (𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (#‘𝐸) ≤ 2))
12 eldifsn 4287 . . . . . . . . 9 (𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ↔ (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅))
1312biimpi 206 . . . . . . . 8 (𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅))
1413anim1i 591 . . . . . . 7 ((𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (#‘𝐸) ≤ 2) → ((𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅) ∧ (#‘𝐸) ≤ 2))
15 df-3an 1038 . . . . . . 7 ((𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (#‘𝐸) ≤ 2) ↔ ((𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅) ∧ (#‘𝐸) ≤ 2))
1614, 15sylibr 224 . . . . . 6 ((𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (#‘𝐸) ≤ 2) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (#‘𝐸) ≤ 2))
1716a1i 11 . . . . 5 (𝐺 ∈ UPGraph → ((𝐸 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ (#‘𝐸) ≤ 2) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (#‘𝐸) ≤ 2)))
1811, 17syl5bi 232 . . . 4 (𝐺 ∈ UPGraph → (𝐸 ∈ {𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) ∣ (#‘𝑥) ≤ 2} → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (#‘𝐸) ≤ 2)))
198, 18syld 47 . . 3 (𝐺 ∈ UPGraph → (𝐸 ∈ ran (iEdg‘𝐺) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (#‘𝐸) ≤ 2)))
202, 19sylbid 230 . 2 (𝐺 ∈ UPGraph → (𝐸 ∈ (Edg‘𝐺) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (#‘𝐸) ≤ 2)))
2120imp 445 1 ((𝐺 ∈ UPGraph ∧ 𝐸 ∈ (Edg‘𝐺)) → (𝐸 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝐸 ≠ ∅ ∧ (#‘𝐸) ≤ 2))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  {crab 2911   ∖ cdif 3552   ⊆ wss 3555  ∅c0 3891  𝒫 cpw 4130  {csn 4148   class class class wbr 4613  dom cdm 5074  ran crn 5075  ⟶wf 5843  ‘cfv 5847   ≤ cle 10019  2c2 11014  #chash 13057  Vtxcvtx 25774  iEdgciedg 25775  Edgcedg 25839   UPGraph cupgr 25871 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-fv 5855  df-edg 25840  df-upgr 25873 This theorem is referenced by:  upgrres1  26093
 Copyright terms: Public domain W3C validator