Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvrefrelsrel Structured version   Visualization version   GIF version

Theorem elcnvrefrelsrel 35805
Description: For sets, being an element of the class of converse reflexive relations (df-cnvrefrels 35797) is equivalent to satisfying the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-Jul-2021.)
Assertion
Ref Expression
elcnvrefrelsrel (𝑅𝑉 → (𝑅 ∈ CnvRefRels ↔ CnvRefRel 𝑅))

Proof of Theorem elcnvrefrelsrel
StepHypRef Expression
1 elrelsrel 35760 . . 3 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
21anbi2d 630 . 2 (𝑅𝑉 → ((𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels ) ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)))
3 elcnvrefrels2 35803 . 2 (𝑅 ∈ CnvRefRels ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ 𝑅 ∈ Rels ))
4 dfcnvrefrel2 35801 . 2 ( CnvRefRel 𝑅 ↔ (𝑅 ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
52, 3, 43bitr4g 316 1 (𝑅𝑉 → (𝑅 ∈ CnvRefRels ↔ CnvRefRel 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2113  cin 3928  wss 3929   I cid 5452   × cxp 5546  dom cdm 5548  ran crn 5549  Rel wrel 5553   Rels crels 35488   CnvRefRels ccnvrefrels 35494   CnvRefRel wcnvrefrel 35495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-xp 5554  df-rel 5555  df-cnv 5556  df-dm 5558  df-rn 5559  df-res 5560  df-rels 35758  df-ssr 35771  df-cnvrefs 35796  df-cnvrefrels 35797  df-cnvrefrel 35798
This theorem is referenced by:  elfunsALTVfunALTV  35963  eldisjsdisj  35993
  Copyright terms: Public domain W3C validator