Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmqs1cossres Structured version   Visualization version   GIF version

Theorem eldmqs1cossres 35908
Description: Elementhood in the domain quotient of the class of cosets by a restriction. (Contributed by Peter Mazsa, 4-May-2019.)
Assertion
Ref Expression
eldmqs1cossres (𝐵𝑉 → (𝐵 ∈ (dom ≀ (𝑅𝐴) / ≀ (𝑅𝐴)) ↔ ∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
Distinct variable groups:   𝑢,𝐴,𝑥   𝑢,𝐵,𝑥   𝑢,𝑅,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑢)

Proof of Theorem eldmqs1cossres
StepHypRef Expression
1 elqsg 8348 . . 3 (𝐵𝑉 → (𝐵 ∈ (dom ≀ (𝑅𝐴) / ≀ (𝑅𝐴)) ↔ ∃𝑥 ∈ dom ≀ (𝑅𝐴)𝐵 = [𝑥] ≀ (𝑅𝐴)))
2 df-rex 3144 . . . 4 (∃𝑥 ∈ dom ≀ (𝑅𝐴)𝐵 = [𝑥] ≀ (𝑅𝐴) ↔ ∃𝑥(𝑥 ∈ dom ≀ (𝑅𝐴) ∧ 𝐵 = [𝑥] ≀ (𝑅𝐴)))
3 eldm1cossres2 35716 . . . . . . 7 (𝑥 ∈ V → (𝑥 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅))
43elv 3499 . . . . . 6 (𝑥 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅)
54anbi1i 625 . . . . 5 ((𝑥 ∈ dom ≀ (𝑅𝐴) ∧ 𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ (∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
65exbii 1848 . . . 4 (∃𝑥(𝑥 ∈ dom ≀ (𝑅𝐴) ∧ 𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
72, 6bitri 277 . . 3 (∃𝑥 ∈ dom ≀ (𝑅𝐴)𝐵 = [𝑥] ≀ (𝑅𝐴) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
81, 7syl6bb 289 . 2 (𝐵𝑉 → (𝐵 ∈ (dom ≀ (𝑅𝐴) / ≀ (𝑅𝐴)) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴))))
9 df-rex 3144 . . . 4 (∃𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴) ↔ ∃𝑥(𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
109rexbii 3247 . . 3 (∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴) ↔ ∃𝑢𝐴𝑥(𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
11 rexcom4 3249 . . . 4 (∃𝑢𝐴𝑥(𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ ∃𝑥𝑢𝐴 (𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
12 r19.41v 3347 . . . . 5 (∃𝑢𝐴 (𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ (∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
1312exbii 1848 . . . 4 (∃𝑥𝑢𝐴 (𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
1411, 13bitri 277 . . 3 (∃𝑢𝐴𝑥(𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
1510, 14bitri 277 . 2 (∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴) ↔ ∃𝑥(∃𝑢𝐴 𝑥 ∈ [𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
168, 15syl6bbr 291 1 (𝐵𝑉 → (𝐵 ∈ (dom ≀ (𝑅𝐴) / ≀ (𝑅𝐴)) ↔ ∃𝑢𝐴𝑥 ∈ [ 𝑢]𝑅𝐵 = [𝑥] ≀ (𝑅𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wrex 3139  Vcvv 3494  dom cdm 5555  cres 5557  [cec 8287   / cqs 8288  ccoss 35468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-xp 5561  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ec 8291  df-qs 8295  df-coss 35674
This theorem is referenced by:  releldmqscoss  35909
  Copyright terms: Public domain W3C validator