Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  releldmqscoss Structured version   Visualization version   GIF version

Theorem releldmqscoss 35909
Description: Elementhood in the domain quotient of the class of cosets by a relation. (Contributed by Peter Mazsa, 23-Apr-2021.)
Assertion
Ref Expression
releldmqscoss (𝐴𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅)))
Distinct variable groups:   𝑢,𝐴,𝑥   𝑢,𝑅,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑢)

Proof of Theorem releldmqscoss
StepHypRef Expression
1 eldmqs1cossres 35908 . . . 4 (𝐴𝑉 → (𝐴 ∈ (dom ≀ (𝑅 ↾ dom 𝑅) / ≀ (𝑅 ↾ dom 𝑅)) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ (𝑅 ↾ dom 𝑅)))
21adantr 483 . . 3 ((𝐴𝑉 ∧ Rel 𝑅) → (𝐴 ∈ (dom ≀ (𝑅 ↾ dom 𝑅) / ≀ (𝑅 ↾ dom 𝑅)) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ (𝑅 ↾ dom 𝑅)))
3 resdm 5897 . . . . . . 7 (Rel 𝑅 → (𝑅 ↾ dom 𝑅) = 𝑅)
43cosseqd 35688 . . . . . 6 (Rel 𝑅 → ≀ (𝑅 ↾ dom 𝑅) = ≀ 𝑅)
54dmqseqd 35892 . . . . 5 (Rel 𝑅 → (dom ≀ (𝑅 ↾ dom 𝑅) / ≀ (𝑅 ↾ dom 𝑅)) = (dom ≀ 𝑅 /𝑅))
65eleq2d 2898 . . . 4 (Rel 𝑅 → (𝐴 ∈ (dom ≀ (𝑅 ↾ dom 𝑅) / ≀ (𝑅 ↾ dom 𝑅)) ↔ 𝐴 ∈ (dom ≀ 𝑅 /𝑅)))
76adantl 484 . . 3 ((𝐴𝑉 ∧ Rel 𝑅) → (𝐴 ∈ (dom ≀ (𝑅 ↾ dom 𝑅) / ≀ (𝑅 ↾ dom 𝑅)) ↔ 𝐴 ∈ (dom ≀ 𝑅 /𝑅)))
84eceq2d 8331 . . . . . 6 (Rel 𝑅 → [𝑥] ≀ (𝑅 ↾ dom 𝑅) = [𝑥] ≀ 𝑅)
98eqeq2d 2832 . . . . 5 (Rel 𝑅 → (𝐴 = [𝑥] ≀ (𝑅 ↾ dom 𝑅) ↔ 𝐴 = [𝑥] ≀ 𝑅))
1092rexbidv 3300 . . . 4 (Rel 𝑅 → (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ (𝑅 ↾ dom 𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅))
1110adantl 484 . . 3 ((𝐴𝑉 ∧ Rel 𝑅) → (∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ (𝑅 ↾ dom 𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅))
122, 7, 113bitr3d 311 . 2 ((𝐴𝑉 ∧ Rel 𝑅) → (𝐴 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅))
1312ex 415 1 (𝐴𝑉 → (Rel 𝑅 → (𝐴 ∈ (dom ≀ 𝑅 /𝑅) ↔ ∃𝑢 ∈ dom 𝑅𝑥 ∈ [ 𝑢]𝑅𝐴 = [𝑥] ≀ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3139  dom cdm 5555  cres 5557  Rel wrel 5560  [cec 8287   / cqs 8288  ccoss 35468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ec 8291  df-qs 8295  df-coss 35674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator