MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmrexrnb Structured version   Visualization version   GIF version

Theorem eldmrexrnb 6855
Description: For any element in the domain of a function, there is an element in the range of the function which is the value of the function at that element. Because of the definition df-fv 6360 of the value of a function, the theorem is only valid in general if the empty set is not contained in the range of the function (the implication "to the right" is always valid). Indeed, with the definition df-fv 6360 of the value of a function, (𝐹𝑌) = ∅ may mean that the value of 𝐹 at 𝑌 is the empty set or that 𝐹 is not defined at 𝑌. (Contributed by Alexander van der Vekens, 17-Dec-2017.)
Assertion
Ref Expression
eldmrexrnb ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 ↔ ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑌

Proof of Theorem eldmrexrnb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldmrexrn 6854 . . 3 (Fun 𝐹 → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
21adantr 483 . 2 ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 → ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
3 eleq1 2899 . . . . 5 (𝑥 = (𝐹𝑌) → (𝑥 ∈ ran 𝐹 ↔ (𝐹𝑌) ∈ ran 𝐹))
4 elnelne2 3133 . . . . . . . . 9 (((𝐹𝑌) ∈ ran 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝐹𝑌) ≠ ∅)
5 n0 4307 . . . . . . . . . 10 ((𝐹𝑌) ≠ ∅ ↔ ∃𝑦 𝑦 ∈ (𝐹𝑌))
6 elfvdm 6699 . . . . . . . . . . 11 (𝑦 ∈ (𝐹𝑌) → 𝑌 ∈ dom 𝐹)
76exlimiv 1930 . . . . . . . . . 10 (∃𝑦 𝑦 ∈ (𝐹𝑌) → 𝑌 ∈ dom 𝐹)
85, 7sylbi 219 . . . . . . . . 9 ((𝐹𝑌) ≠ ∅ → 𝑌 ∈ dom 𝐹)
94, 8syl 17 . . . . . . . 8 (((𝐹𝑌) ∈ ran 𝐹 ∧ ∅ ∉ ran 𝐹) → 𝑌 ∈ dom 𝐹)
109expcom 416 . . . . . . 7 (∅ ∉ ran 𝐹 → ((𝐹𝑌) ∈ ran 𝐹𝑌 ∈ dom 𝐹))
1110adantl 484 . . . . . 6 ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → ((𝐹𝑌) ∈ ran 𝐹𝑌 ∈ dom 𝐹))
1211com12 32 . . . . 5 ((𝐹𝑌) ∈ ran 𝐹 → ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → 𝑌 ∈ dom 𝐹))
133, 12syl6bi 255 . . . 4 (𝑥 = (𝐹𝑌) → (𝑥 ∈ ran 𝐹 → ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → 𝑌 ∈ dom 𝐹)))
1413com13 88 . . 3 ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑥 ∈ ran 𝐹 → (𝑥 = (𝐹𝑌) → 𝑌 ∈ dom 𝐹)))
1514rexlimdv 3282 . 2 ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌) → 𝑌 ∈ dom 𝐹))
162, 15impbid 214 1 ((Fun 𝐹 ∧ ∅ ∉ ran 𝐹) → (𝑌 ∈ dom 𝐹 ↔ ∃𝑥 ∈ ran 𝐹 𝑥 = (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wex 1779  wcel 2113  wne 3015  wnel 3122  wrex 3138  c0 4288  dom cdm 5552  ran crn 5553  Fun wfun 6346  cfv 6352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3495  df-sbc 3771  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4465  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4836  df-br 5064  df-opab 5126  df-id 5457  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-iota 6311  df-fun 6354  df-fn 6355  df-fv 6360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator