Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqfunresadj Structured version   Visualization version   GIF version

Theorem eqfunresadj 33006
Description: Law for adjoining an element to restrictions of functions. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
eqfunresadj (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝐹 ↾ (𝑋 ∪ {𝑌})) = (𝐺 ↾ (𝑋 ∪ {𝑌})))

Proof of Theorem eqfunresadj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5884 . 2 Rel (𝐹 ↾ (𝑋 ∪ {𝑌}))
2 relres 5884 . 2 Rel (𝐺 ↾ (𝑋 ∪ {𝑌}))
3 breq 5070 . . . . 5 ((𝐹𝑋) = (𝐺𝑋) → (𝑥(𝐹𝑋)𝑦𝑥(𝐺𝑋)𝑦))
433ad2ant2 1130 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑥(𝐹𝑋)𝑦𝑥(𝐺𝑋)𝑦))
5 velsn 4585 . . . . . . 7 (𝑥 ∈ {𝑌} ↔ 𝑥 = 𝑌)
6 simp33 1207 . . . . . . . . . 10 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝐹𝑌) = (𝐺𝑌))
76eqeq1d 2825 . . . . . . . . 9 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → ((𝐹𝑌) = 𝑦 ↔ (𝐺𝑌) = 𝑦))
8 simp1l 1193 . . . . . . . . . 10 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → Fun 𝐹)
9 simp31 1205 . . . . . . . . . 10 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → 𝑌 ∈ dom 𝐹)
10 funbrfvb 6722 . . . . . . . . . 10 ((Fun 𝐹𝑌 ∈ dom 𝐹) → ((𝐹𝑌) = 𝑦𝑌𝐹𝑦))
118, 9, 10syl2anc 586 . . . . . . . . 9 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → ((𝐹𝑌) = 𝑦𝑌𝐹𝑦))
12 simp1r 1194 . . . . . . . . . 10 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → Fun 𝐺)
13 simp32 1206 . . . . . . . . . 10 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → 𝑌 ∈ dom 𝐺)
14 funbrfvb 6722 . . . . . . . . . 10 ((Fun 𝐺𝑌 ∈ dom 𝐺) → ((𝐺𝑌) = 𝑦𝑌𝐺𝑦))
1512, 13, 14syl2anc 586 . . . . . . . . 9 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → ((𝐺𝑌) = 𝑦𝑌𝐺𝑦))
167, 11, 153bitr3d 311 . . . . . . . 8 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑌𝐹𝑦𝑌𝐺𝑦))
17 breq1 5071 . . . . . . . . 9 (𝑥 = 𝑌 → (𝑥𝐹𝑦𝑌𝐹𝑦))
18 breq1 5071 . . . . . . . . 9 (𝑥 = 𝑌 → (𝑥𝐺𝑦𝑌𝐺𝑦))
1917, 18bibi12d 348 . . . . . . . 8 (𝑥 = 𝑌 → ((𝑥𝐹𝑦𝑥𝐺𝑦) ↔ (𝑌𝐹𝑦𝑌𝐺𝑦)))
2016, 19syl5ibrcom 249 . . . . . . 7 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑥 = 𝑌 → (𝑥𝐹𝑦𝑥𝐺𝑦)))
215, 20syl5bi 244 . . . . . 6 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑥 ∈ {𝑌} → (𝑥𝐹𝑦𝑥𝐺𝑦)))
2221pm5.32d 579 . . . . 5 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → ((𝑥 ∈ {𝑌} ∧ 𝑥𝐹𝑦) ↔ (𝑥 ∈ {𝑌} ∧ 𝑥𝐺𝑦)))
23 vex 3499 . . . . . 6 𝑦 ∈ V
2423brresi 5864 . . . . 5 (𝑥(𝐹 ↾ {𝑌})𝑦 ↔ (𝑥 ∈ {𝑌} ∧ 𝑥𝐹𝑦))
2523brresi 5864 . . . . 5 (𝑥(𝐺 ↾ {𝑌})𝑦 ↔ (𝑥 ∈ {𝑌} ∧ 𝑥𝐺𝑦))
2622, 24, 253bitr4g 316 . . . 4 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑥(𝐹 ↾ {𝑌})𝑦𝑥(𝐺 ↾ {𝑌})𝑦))
274, 26orbi12d 915 . . 3 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → ((𝑥(𝐹𝑋)𝑦𝑥(𝐹 ↾ {𝑌})𝑦) ↔ (𝑥(𝐺𝑋)𝑦𝑥(𝐺 ↾ {𝑌})𝑦)))
28 resundi 5869 . . . . 5 (𝐹 ↾ (𝑋 ∪ {𝑌})) = ((𝐹𝑋) ∪ (𝐹 ↾ {𝑌}))
2928breqi 5074 . . . 4 (𝑥(𝐹 ↾ (𝑋 ∪ {𝑌}))𝑦𝑥((𝐹𝑋) ∪ (𝐹 ↾ {𝑌}))𝑦)
30 brun 5119 . . . 4 (𝑥((𝐹𝑋) ∪ (𝐹 ↾ {𝑌}))𝑦 ↔ (𝑥(𝐹𝑋)𝑦𝑥(𝐹 ↾ {𝑌})𝑦))
3129, 30bitri 277 . . 3 (𝑥(𝐹 ↾ (𝑋 ∪ {𝑌}))𝑦 ↔ (𝑥(𝐹𝑋)𝑦𝑥(𝐹 ↾ {𝑌})𝑦))
32 resundi 5869 . . . . 5 (𝐺 ↾ (𝑋 ∪ {𝑌})) = ((𝐺𝑋) ∪ (𝐺 ↾ {𝑌}))
3332breqi 5074 . . . 4 (𝑥(𝐺 ↾ (𝑋 ∪ {𝑌}))𝑦𝑥((𝐺𝑋) ∪ (𝐺 ↾ {𝑌}))𝑦)
34 brun 5119 . . . 4 (𝑥((𝐺𝑋) ∪ (𝐺 ↾ {𝑌}))𝑦 ↔ (𝑥(𝐺𝑋)𝑦𝑥(𝐺 ↾ {𝑌})𝑦))
3533, 34bitri 277 . . 3 (𝑥(𝐺 ↾ (𝑋 ∪ {𝑌}))𝑦 ↔ (𝑥(𝐺𝑋)𝑦𝑥(𝐺 ↾ {𝑌})𝑦))
3627, 31, 353bitr4g 316 . 2 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝑥(𝐹 ↾ (𝑋 ∪ {𝑌}))𝑦𝑥(𝐺 ↾ (𝑋 ∪ {𝑌}))𝑦))
371, 2, 36eqbrrdiv 5669 1 (((Fun 𝐹 ∧ Fun 𝐺) ∧ (𝐹𝑋) = (𝐺𝑋) ∧ (𝑌 ∈ dom 𝐹𝑌 ∈ dom 𝐺 ∧ (𝐹𝑌) = (𝐺𝑌))) → (𝐹 ↾ (𝑋 ∪ {𝑌})) = (𝐺 ↾ (𝑋 ∪ {𝑌})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  cun 3936  {csn 4569   class class class wbr 5068  dom cdm 5557  cres 5559  Fun wfun 6351  cfv 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-res 5569  df-iota 6316  df-fun 6359  df-fn 6360  df-fv 6365
This theorem is referenced by:  eqfunressuc  33007
  Copyright terms: Public domain W3C validator