MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ereldm Structured version   Visualization version   GIF version

Theorem ereldm 8323
Description: Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ereldm.1 (𝜑𝑅 Er 𝑋)
ereldm.2 (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)
Assertion
Ref Expression
ereldm (𝜑 → (𝐴𝑋𝐵𝑋))

Proof of Theorem ereldm
StepHypRef Expression
1 ereldm.2 . . . 4 (𝜑 → [𝐴]𝑅 = [𝐵]𝑅)
21neeq1d 3075 . . 3 (𝜑 → ([𝐴]𝑅 ≠ ∅ ↔ [𝐵]𝑅 ≠ ∅))
3 ecdmn0 8322 . . 3 (𝐴 ∈ dom 𝑅 ↔ [𝐴]𝑅 ≠ ∅)
4 ecdmn0 8322 . . 3 (𝐵 ∈ dom 𝑅 ↔ [𝐵]𝑅 ≠ ∅)
52, 3, 43bitr4g 316 . 2 (𝜑 → (𝐴 ∈ dom 𝑅𝐵 ∈ dom 𝑅))
6 ereldm.1 . . . 4 (𝜑𝑅 Er 𝑋)
7 erdm 8285 . . . 4 (𝑅 Er 𝑋 → dom 𝑅 = 𝑋)
86, 7syl 17 . . 3 (𝜑 → dom 𝑅 = 𝑋)
98eleq2d 2898 . 2 (𝜑 → (𝐴 ∈ dom 𝑅𝐴𝑋))
108eleq2d 2898 . 2 (𝜑 → (𝐵 ∈ dom 𝑅𝐵𝑋))
115, 9, 103bitr3d 311 1 (𝜑 → (𝐴𝑋𝐵𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  wne 3016  c0 4279  dom cdm 5541   Er wer 8272  [cec 8273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pr 5316
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3488  df-sbc 3764  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-nul 4280  df-if 4454  df-sn 4554  df-pr 4556  df-op 4560  df-br 5053  df-opab 5115  df-xp 5547  df-cnv 5549  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-er 8275  df-ec 8277
This theorem is referenced by:  erth  8324  brecop  8376  eceqoveq  8388
  Copyright terms: Public domain W3C validator