Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eubrdm Structured version   Visualization version   GIF version

Theorem eubrdm 43346
Description: If there is a unique set which is related to a class, then the class is an element of the domain of the relation. (Contributed by AV, 25-Aug-2022.)
Assertion
Ref Expression
eubrdm (∃!𝑏 𝐴𝑅𝑏𝐴 ∈ dom 𝑅)
Distinct variable groups:   𝐴,𝑏   𝑅,𝑏

Proof of Theorem eubrdm
StepHypRef Expression
1 eubrv 43345 . 2 (∃!𝑏 𝐴𝑅𝑏𝐴 ∈ V)
2 iotaex 6328 . . 3 (℩𝑏𝐴𝑅𝑏) ∈ V
32a1i 11 . 2 (∃!𝑏 𝐴𝑅𝑏 → (℩𝑏𝐴𝑅𝑏) ∈ V)
4 iota4 6329 . . 3 (∃!𝑏 𝐴𝑅𝑏[(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏)
5 sbcbr12g 5115 . . . . 5 ((℩𝑏𝐴𝑅𝑏) ∈ V → ([(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏(℩𝑏𝐴𝑅𝑏) / 𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏) / 𝑏𝑏))
62, 5ax-mp 5 . . . 4 ([(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏(℩𝑏𝐴𝑅𝑏) / 𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏) / 𝑏𝑏)
7 csbconstg 3895 . . . . . 6 ((℩𝑏𝐴𝑅𝑏) ∈ V → (℩𝑏𝐴𝑅𝑏) / 𝑏𝐴 = 𝐴)
82, 7ax-mp 5 . . . . 5 (℩𝑏𝐴𝑅𝑏) / 𝑏𝐴 = 𝐴
92csbvargi 4377 . . . . 5 (℩𝑏𝐴𝑅𝑏) / 𝑏𝑏 = (℩𝑏𝐴𝑅𝑏)
108, 9breq12i 5068 . . . 4 ((℩𝑏𝐴𝑅𝑏) / 𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏) / 𝑏𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏))
116, 10sylbb 221 . . 3 ([(℩𝑏𝐴𝑅𝑏) / 𝑏]𝐴𝑅𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏))
124, 11syl 17 . 2 (∃!𝑏 𝐴𝑅𝑏𝐴𝑅(℩𝑏𝐴𝑅𝑏))
13 breldmg 5771 . 2 ((𝐴 ∈ V ∧ (℩𝑏𝐴𝑅𝑏) ∈ V ∧ 𝐴𝑅(℩𝑏𝐴𝑅𝑏)) → 𝐴 ∈ dom 𝑅)
141, 3, 12, 13syl3anc 1366 1 (∃!𝑏 𝐴𝑅𝑏𝐴 ∈ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1536  wcel 2113  ∃!weu 2652  Vcvv 3491  [wsbc 3768  csb 3876   class class class wbr 5059  dom cdm 5548  cio 6305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-nul 5203  ax-pow 5259
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-dm 5558  df-iota 6307
This theorem is referenced by:  dfafv2  43406
  Copyright terms: Public domain W3C validator