MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1resf1 Structured version   Visualization version   GIF version

Theorem f1resf1 6576
Description: The restriction of an injective function is injective. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
f1resf1 ((𝐹:𝐴1-1𝐵𝐶𝐴 ∧ (𝐹𝐶):𝐶𝐷) → (𝐹𝐶):𝐶1-1𝐷)

Proof of Theorem f1resf1
StepHypRef Expression
1 f1ssres 6575 . . 3 ((𝐹:𝐴1-1𝐵𝐶𝐴) → (𝐹𝐶):𝐶1-1𝐵)
213adant3 1127 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴 ∧ (𝐹𝐶):𝐶𝐷) → (𝐹𝐶):𝐶1-1𝐵)
3 frn 6513 . . 3 ((𝐹𝐶):𝐶𝐷 → ran (𝐹𝐶) ⊆ 𝐷)
433ad2ant3 1130 . 2 ((𝐹:𝐴1-1𝐵𝐶𝐴 ∧ (𝐹𝐶):𝐶𝐷) → ran (𝐹𝐶) ⊆ 𝐷)
5 f1ssr 6574 . 2 (((𝐹𝐶):𝐶1-1𝐵 ∧ ran (𝐹𝐶) ⊆ 𝐷) → (𝐹𝐶):𝐶1-1𝐷)
62, 4, 5syl2anc 586 1 ((𝐹:𝐴1-1𝐵𝐶𝐴 ∧ (𝐹𝐶):𝐶𝐷) → (𝐹𝐶):𝐶1-1𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1082  wss 3929  ran crn 5549  cres 5550  wf 6344  1-1wf1 6345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-br 5060  df-opab 5122  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353
This theorem is referenced by:  inlresf1  9337  inrresf1  9339  pfxf1  30616
  Copyright terms: Public domain W3C validator