![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > feqresmptf | Structured version Visualization version GIF version |
Description: Express a restricted function as a mapping. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
feqresmptf.1 | ⊢ Ⅎ𝑥𝐹 |
feqresmptf.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
feqresmptf.3 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
Ref | Expression |
---|---|
feqresmptf | ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2793 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
2 | feqresmptf.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | 2, 1 | nfres 5430 | . . 3 ⊢ Ⅎ𝑥(𝐹 ↾ 𝐶) |
4 | feqresmptf.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
5 | feqresmptf.3 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
6 | 4, 5 | fssresd 6109 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
7 | 1, 3, 6 | feqmptdf 6290 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥))) |
8 | fvres 6245 | . . 3 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
9 | 8 | mpteq2ia 4773 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥)) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) |
10 | 7, 9 | syl6eq 2701 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 Ⅎwnfc 2780 ⊆ wss 3607 ↦ cmpt 4762 ↾ cres 5145 ⟶wf 5922 ‘cfv 5926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |