MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feqmptdf Structured version   Visualization version   GIF version

Theorem feqmptdf 6208
Description: Deduction form of dffn5f 6209. (Contributed by Mario Carneiro, 8-Jan-2015.) (Revised by Thierry Arnoux, 10-May-2017.)
Hypotheses
Ref Expression
feqmptdf.1 𝑥𝐴
feqmptdf.2 𝑥𝐹
feqmptdf.3 (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
feqmptdf (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))

Proof of Theorem feqmptdf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 feqmptdf.3 . 2 (𝜑𝐹:𝐴𝐵)
2 ffn 6002 . 2 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
3 fnrel 5947 . . . . 5 (𝐹 Fn 𝐴 → Rel 𝐹)
4 feqmptdf.2 . . . . . 6 𝑥𝐹
5 nfcv 2761 . . . . . 6 𝑦𝐹
64, 5dfrel4 5544 . . . . 5 (Rel 𝐹𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
73, 6sylib 208 . . . 4 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦})
8 feqmptdf.1 . . . . . 6 𝑥𝐴
94, 8nffn 5945 . . . . 5 𝑥 𝐹 Fn 𝐴
10 nfv 1840 . . . . 5 𝑦 𝐹 Fn 𝐴
11 fnbr 5951 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
1211ex 450 . . . . . . 7 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
1312pm4.71rd 666 . . . . . 6 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑥𝐹𝑦)))
14 eqcom 2628 . . . . . . . 8 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
15 fnbrfvb 6193 . . . . . . . 8 ((𝐹 Fn 𝐴𝑥𝐴) → ((𝐹𝑥) = 𝑦𝑥𝐹𝑦))
1614, 15syl5bb 272 . . . . . . 7 ((𝐹 Fn 𝐴𝑥𝐴) → (𝑦 = (𝐹𝑥) ↔ 𝑥𝐹𝑦))
1716pm5.32da 672 . . . . . 6 (𝐹 Fn 𝐴 → ((𝑥𝐴𝑦 = (𝐹𝑥)) ↔ (𝑥𝐴𝑥𝐹𝑦)))
1813, 17bitr4d 271 . . . . 5 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 ↔ (𝑥𝐴𝑦 = (𝐹𝑥))))
199, 10, 18opabbid 4677 . . . 4 (𝐹 Fn 𝐴 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝐹𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
207, 19eqtrd 2655 . . 3 (𝐹 Fn 𝐴𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))})
21 df-mpt 4675 . . 3 (𝑥𝐴 ↦ (𝐹𝑥)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = (𝐹𝑥))}
2220, 21syl6eqr 2673 . 2 (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
231, 2, 223syl 18 1 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wnfc 2748   class class class wbr 4613  {copab 4672  cmpt 4673  Rel wrel 5079   Fn wfn 5842  wf 5843  cfv 5847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-fv 5855
This theorem is referenced by:  esumf1o  29893  feqresmptf  38908  volioofmpt  39518  volicofmpt  39521
  Copyright terms: Public domain W3C validator