![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin1ai | Structured version Visualization version GIF version |
Description: Property of a Ia-finite set. (Contributed by Stefan O'Rear, 16-May-2015.) |
Ref | Expression |
---|---|
fin1ai | ⊢ ((𝐴 ∈ FinIa ∧ 𝑋 ⊆ 𝐴) → (𝑋 ∈ Fin ∨ (𝐴 ∖ 𝑋) ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2825 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ Fin ↔ 𝑋 ∈ Fin)) | |
2 | difeq2 3863 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑋)) | |
3 | 2 | eleq1d 2822 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝐴 ∖ 𝑥) ∈ Fin ↔ (𝐴 ∖ 𝑋) ∈ Fin)) |
4 | 1, 3 | orbi12d 748 | . 2 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ Fin ∨ (𝐴 ∖ 𝑥) ∈ Fin) ↔ (𝑋 ∈ Fin ∨ (𝐴 ∖ 𝑋) ∈ Fin))) |
5 | isfin1a 9304 | . . . 4 ⊢ (𝐴 ∈ FinIa → (𝐴 ∈ FinIa ↔ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴 ∖ 𝑥) ∈ Fin))) | |
6 | 5 | ibi 256 | . . 3 ⊢ (𝐴 ∈ FinIa → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴 ∖ 𝑥) ∈ Fin)) |
7 | 6 | adantr 472 | . 2 ⊢ ((𝐴 ∈ FinIa ∧ 𝑋 ⊆ 𝐴) → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴 ∖ 𝑥) ∈ Fin)) |
8 | elpw2g 4974 | . . 3 ⊢ (𝐴 ∈ FinIa → (𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 ⊆ 𝐴)) | |
9 | 8 | biimpar 503 | . 2 ⊢ ((𝐴 ∈ FinIa ∧ 𝑋 ⊆ 𝐴) → 𝑋 ∈ 𝒫 𝐴) |
10 | 4, 7, 9 | rspcdva 3453 | 1 ⊢ ((𝐴 ∈ FinIa ∧ 𝑋 ⊆ 𝐴) → (𝑋 ∈ Fin ∨ (𝐴 ∖ 𝑋) ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1630 ∈ wcel 2137 ∀wral 3048 ∖ cdif 3710 ⊆ wss 3713 𝒫 cpw 4300 Fincfn 8119 FinIacfin1a 9290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ral 3053 df-rab 3057 df-v 3340 df-dif 3716 df-in 3720 df-ss 3727 df-pw 4302 df-fin1a 9297 |
This theorem is referenced by: enfin1ai 9396 fin1a2 9427 fin1aufil 21935 |
Copyright terms: Public domain | W3C validator |