MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enfin1ai Structured version   Visualization version   GIF version

Theorem enfin1ai 9806
Description: Ia-finiteness is a cardinal property. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
enfin1ai (𝐴𝐵 → (𝐴 ∈ FinIa𝐵 ∈ FinIa))

Proof of Theorem enfin1ai
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ensym 8558 . . 3 (𝐴𝐵𝐵𝐴)
2 bren 8518 . . 3 (𝐵𝐴 ↔ ∃𝑓 𝑓:𝐵1-1-onto𝐴)
31, 2sylib 220 . 2 (𝐴𝐵 → ∃𝑓 𝑓:𝐵1-1-onto𝐴)
4 elpwi 4548 . . . . . . 7 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
5 simplr 767 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝐴 ∈ FinIa)
6 imassrn 5940 . . . . . . . . . 10 (𝑓𝑥) ⊆ ran 𝑓
7 f1of 6615 . . . . . . . . . . . 12 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵𝐴)
87ad2antrr 724 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝑓:𝐵𝐴)
98frnd 6521 . . . . . . . . . 10 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ran 𝑓𝐴)
106, 9sstrid 3978 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓𝑥) ⊆ 𝐴)
11 fin1ai 9715 . . . . . . . . 9 ((𝐴 ∈ FinIa ∧ (𝑓𝑥) ⊆ 𝐴) → ((𝑓𝑥) ∈ Fin ∨ (𝐴 ∖ (𝑓𝑥)) ∈ Fin))
125, 10, 11syl2anc 586 . . . . . . . 8 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ((𝑓𝑥) ∈ Fin ∨ (𝐴 ∖ (𝑓𝑥)) ∈ Fin))
13 f1of1 6614 . . . . . . . . . . . 12 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵1-1𝐴)
1413ad2antrr 724 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝑓:𝐵1-1𝐴)
15 simpr 487 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝑥𝐵)
16 vex 3497 . . . . . . . . . . . 12 𝑥 ∈ V
1716a1i 11 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝑥 ∈ V)
18 f1imaeng 8569 . . . . . . . . . . 11 ((𝑓:𝐵1-1𝐴𝑥𝐵𝑥 ∈ V) → (𝑓𝑥) ≈ 𝑥)
1914, 15, 17, 18syl3anc 1367 . . . . . . . . . 10 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓𝑥) ≈ 𝑥)
20 enfi 8734 . . . . . . . . . 10 ((𝑓𝑥) ≈ 𝑥 → ((𝑓𝑥) ∈ Fin ↔ 𝑥 ∈ Fin))
2119, 20syl 17 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ((𝑓𝑥) ∈ Fin ↔ 𝑥 ∈ Fin))
22 df-f1 6360 . . . . . . . . . . . . . 14 (𝑓:𝐵1-1𝐴 ↔ (𝑓:𝐵𝐴 ∧ Fun 𝑓))
2322simprbi 499 . . . . . . . . . . . . 13 (𝑓:𝐵1-1𝐴 → Fun 𝑓)
24 imadif 6438 . . . . . . . . . . . . 13 (Fun 𝑓 → (𝑓 “ (𝐵𝑥)) = ((𝑓𝐵) ∖ (𝑓𝑥)))
2514, 23, 243syl 18 . . . . . . . . . . . 12 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓 “ (𝐵𝑥)) = ((𝑓𝐵) ∖ (𝑓𝑥)))
26 f1ofo 6622 . . . . . . . . . . . . . . 15 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵onto𝐴)
27 foima 6595 . . . . . . . . . . . . . . 15 (𝑓:𝐵onto𝐴 → (𝑓𝐵) = 𝐴)
2826, 27syl 17 . . . . . . . . . . . . . 14 (𝑓:𝐵1-1-onto𝐴 → (𝑓𝐵) = 𝐴)
2928ad2antrr 724 . . . . . . . . . . . . 13 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓𝐵) = 𝐴)
3029difeq1d 4098 . . . . . . . . . . . 12 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ((𝑓𝐵) ∖ (𝑓𝑥)) = (𝐴 ∖ (𝑓𝑥)))
3125, 30eqtrd 2856 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓 “ (𝐵𝑥)) = (𝐴 ∖ (𝑓𝑥)))
32 difssd 4109 . . . . . . . . . . . 12 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝐵𝑥) ⊆ 𝐵)
33 vex 3497 . . . . . . . . . . . . . . 15 𝑓 ∈ V
347adantr 483 . . . . . . . . . . . . . . 15 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → 𝑓:𝐵𝐴)
35 dmfex 7641 . . . . . . . . . . . . . . 15 ((𝑓 ∈ V ∧ 𝑓:𝐵𝐴) → 𝐵 ∈ V)
3633, 34, 35sylancr 589 . . . . . . . . . . . . . 14 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → 𝐵 ∈ V)
3736adantr 483 . . . . . . . . . . . . 13 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → 𝐵 ∈ V)
38 difexg 5231 . . . . . . . . . . . . 13 (𝐵 ∈ V → (𝐵𝑥) ∈ V)
3937, 38syl 17 . . . . . . . . . . . 12 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝐵𝑥) ∈ V)
40 f1imaeng 8569 . . . . . . . . . . . 12 ((𝑓:𝐵1-1𝐴 ∧ (𝐵𝑥) ⊆ 𝐵 ∧ (𝐵𝑥) ∈ V) → (𝑓 “ (𝐵𝑥)) ≈ (𝐵𝑥))
4114, 32, 39, 40syl3anc 1367 . . . . . . . . . . 11 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑓 “ (𝐵𝑥)) ≈ (𝐵𝑥))
4231, 41eqbrtrrd 5090 . . . . . . . . . 10 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝐴 ∖ (𝑓𝑥)) ≈ (𝐵𝑥))
43 enfi 8734 . . . . . . . . . 10 ((𝐴 ∖ (𝑓𝑥)) ≈ (𝐵𝑥) → ((𝐴 ∖ (𝑓𝑥)) ∈ Fin ↔ (𝐵𝑥) ∈ Fin))
4442, 43syl 17 . . . . . . . . 9 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → ((𝐴 ∖ (𝑓𝑥)) ∈ Fin ↔ (𝐵𝑥) ∈ Fin))
4521, 44orbi12d 915 . . . . . . . 8 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (((𝑓𝑥) ∈ Fin ∨ (𝐴 ∖ (𝑓𝑥)) ∈ Fin) ↔ (𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin)))
4612, 45mpbid 234 . . . . . . 7 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥𝐵) → (𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin))
474, 46sylan2 594 . . . . . 6 (((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) ∧ 𝑥 ∈ 𝒫 𝐵) → (𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin))
4847ralrimiva 3182 . . . . 5 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → ∀𝑥 ∈ 𝒫 𝐵(𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin))
49 isfin1a 9714 . . . . . 6 (𝐵 ∈ V → (𝐵 ∈ FinIa ↔ ∀𝑥 ∈ 𝒫 𝐵(𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin)))
5036, 49syl 17 . . . . 5 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → (𝐵 ∈ FinIa ↔ ∀𝑥 ∈ 𝒫 𝐵(𝑥 ∈ Fin ∨ (𝐵𝑥) ∈ Fin)))
5148, 50mpbird 259 . . . 4 ((𝑓:𝐵1-1-onto𝐴𝐴 ∈ FinIa) → 𝐵 ∈ FinIa)
5251ex 415 . . 3 (𝑓:𝐵1-1-onto𝐴 → (𝐴 ∈ FinIa𝐵 ∈ FinIa))
5352exlimiv 1931 . 2 (∃𝑓 𝑓:𝐵1-1-onto𝐴 → (𝐴 ∈ FinIa𝐵 ∈ FinIa))
543, 53syl 17 1 (𝐴𝐵 → (𝐴 ∈ FinIa𝐵 ∈ FinIa))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wex 1780  wcel 2114  wral 3138  Vcvv 3494  cdif 3933  wss 3936  𝒫 cpw 4539   class class class wbr 5066  ccnv 5554  ran crn 5556  cima 5558  Fun wfun 6349  wf 6351  1-1wf1 6352  ontowfo 6353  1-1-ontowf1o 6354  cen 8506  Fincfn 8509  FinIacfin1a 9700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-er 8289  df-en 8510  df-fin 8513  df-fin1a 9707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator