Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  founiiun0 Structured version   Visualization version   GIF version

Theorem founiiun0 38851
Description: Union expressed as an indexed union, when a map onto is given. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
founiiun0 (𝐹:𝐴onto→(𝐵 ∪ {∅}) → 𝐵 = 𝑥𝐴 (𝐹𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem founiiun0
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 uniiun 4539 . . 3 𝐵 = 𝑦𝐵 𝑦
21a1i 11 . 2 (𝐹:𝐴onto→(𝐵 ∪ {∅}) → 𝐵 = 𝑦𝐵 𝑦)
3 simpl 473 . . . . . . 7 ((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ 𝑦𝐵) → 𝐹:𝐴onto→(𝐵 ∪ {∅}))
4 elun1 3758 . . . . . . . 8 (𝑦𝐵𝑦 ∈ (𝐵 ∪ {∅}))
54adantl 482 . . . . . . 7 ((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ 𝑦𝐵) → 𝑦 ∈ (𝐵 ∪ {∅}))
6 foelrni 6201 . . . . . . 7 ((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ 𝑦 ∈ (𝐵 ∪ {∅})) → ∃𝑥𝐴 (𝐹𝑥) = 𝑦)
73, 5, 6syl2anc 692 . . . . . 6 ((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ 𝑦𝐵) → ∃𝑥𝐴 (𝐹𝑥) = 𝑦)
8 eqimss2 3637 . . . . . . 7 ((𝐹𝑥) = 𝑦𝑦 ⊆ (𝐹𝑥))
98reximi 3005 . . . . . 6 (∃𝑥𝐴 (𝐹𝑥) = 𝑦 → ∃𝑥𝐴 𝑦 ⊆ (𝐹𝑥))
107, 9syl 17 . . . . 5 ((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ 𝑦𝐵) → ∃𝑥𝐴 𝑦 ⊆ (𝐹𝑥))
1110ralrimiva 2960 . . . 4 (𝐹:𝐴onto→(𝐵 ∪ {∅}) → ∀𝑦𝐵𝑥𝐴 𝑦 ⊆ (𝐹𝑥))
12 iunss2 4531 . . . 4 (∀𝑦𝐵𝑥𝐴 𝑦 ⊆ (𝐹𝑥) → 𝑦𝐵 𝑦 𝑥𝐴 (𝐹𝑥))
1311, 12syl 17 . . 3 (𝐹:𝐴onto→(𝐵 ∪ {∅}) → 𝑦𝐵 𝑦 𝑥𝐴 (𝐹𝑥))
14 simpl 473 . . . . . 6 ((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ 𝐵 = ∅) → 𝐹:𝐴onto→(𝐵 ∪ {∅}))
15 uneq1 3738 . . . . . . . . 9 (𝐵 = ∅ → (𝐵 ∪ {∅}) = (∅ ∪ {∅}))
16 0un 38700 . . . . . . . . . 10 (∅ ∪ {∅}) = {∅}
1716a1i 11 . . . . . . . . 9 (𝐵 = ∅ → (∅ ∪ {∅}) = {∅})
1815, 17eqtrd 2655 . . . . . . . 8 (𝐵 = ∅ → (𝐵 ∪ {∅}) = {∅})
1918adantl 482 . . . . . . 7 ((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ 𝐵 = ∅) → (𝐵 ∪ {∅}) = {∅})
20 foeq3 6070 . . . . . . 7 ((𝐵 ∪ {∅}) = {∅} → (𝐹:𝐴onto→(𝐵 ∪ {∅}) ↔ 𝐹:𝐴onto→{∅}))
2119, 20syl 17 . . . . . 6 ((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ 𝐵 = ∅) → (𝐹:𝐴onto→(𝐵 ∪ {∅}) ↔ 𝐹:𝐴onto→{∅}))
2214, 21mpbid 222 . . . . 5 ((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ 𝐵 = ∅) → 𝐹:𝐴onto→{∅})
23 unisn0 38707 . . . . . . . . 9 {∅} = ∅
2423eqcomi 2630 . . . . . . . 8 ∅ = {∅}
2524a1i 11 . . . . . . 7 (𝐹:𝐴onto→{∅} → ∅ = {∅})
26 founiiun 38834 . . . . . . 7 (𝐹:𝐴onto→{∅} → {∅} = 𝑥𝐴 (𝐹𝑥))
2725, 26eqtr2d 2656 . . . . . 6 (𝐹:𝐴onto→{∅} → 𝑥𝐴 (𝐹𝑥) = ∅)
28 0ss 3944 . . . . . . 7 ∅ ⊆ 𝑦𝐵 𝑦
2928a1i 11 . . . . . 6 (𝐹:𝐴onto→{∅} → ∅ ⊆ 𝑦𝐵 𝑦)
3027, 29eqsstrd 3618 . . . . 5 (𝐹:𝐴onto→{∅} → 𝑥𝐴 (𝐹𝑥) ⊆ 𝑦𝐵 𝑦)
3122, 30syl 17 . . . 4 ((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ 𝐵 = ∅) → 𝑥𝐴 (𝐹𝑥) ⊆ 𝑦𝐵 𝑦)
32 ssid 3603 . . . . . . . . 9 (𝐹𝑥) ⊆ (𝐹𝑥)
33 sseq2 3606 . . . . . . . . . 10 (𝑦 = (𝐹𝑥) → ((𝐹𝑥) ⊆ 𝑦 ↔ (𝐹𝑥) ⊆ (𝐹𝑥)))
3433rspcev 3295 . . . . . . . . 9 (((𝐹𝑥) ∈ 𝐵 ∧ (𝐹𝑥) ⊆ (𝐹𝑥)) → ∃𝑦𝐵 (𝐹𝑥) ⊆ 𝑦)
3532, 34mpan2 706 . . . . . . . 8 ((𝐹𝑥) ∈ 𝐵 → ∃𝑦𝐵 (𝐹𝑥) ⊆ 𝑦)
3635adantl 482 . . . . . . 7 ((((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) ∧ 𝑥𝐴) ∧ (𝐹𝑥) ∈ 𝐵) → ∃𝑦𝐵 (𝐹𝑥) ⊆ 𝑦)
37 simpl 473 . . . . . . . 8 ((((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) ∧ 𝑥𝐴) ∧ ¬ (𝐹𝑥) ∈ 𝐵) → ((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) ∧ 𝑥𝐴))
38 fof 6072 . . . . . . . . . . . . 13 (𝐹:𝐴onto→(𝐵 ∪ {∅}) → 𝐹:𝐴⟶(𝐵 ∪ {∅}))
3938ffvelrnda 6315 . . . . . . . . . . . 12 ((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ (𝐵 ∪ {∅}))
4039adantr 481 . . . . . . . . . . 11 (((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ 𝑥𝐴) ∧ ¬ (𝐹𝑥) ∈ 𝐵) → (𝐹𝑥) ∈ (𝐵 ∪ {∅}))
41 simpr 477 . . . . . . . . . . 11 (((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ 𝑥𝐴) ∧ ¬ (𝐹𝑥) ∈ 𝐵) → ¬ (𝐹𝑥) ∈ 𝐵)
42 elunnel1 3732 . . . . . . . . . . 11 (((𝐹𝑥) ∈ (𝐵 ∪ {∅}) ∧ ¬ (𝐹𝑥) ∈ 𝐵) → (𝐹𝑥) ∈ {∅})
4340, 41, 42syl2anc 692 . . . . . . . . . 10 (((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ 𝑥𝐴) ∧ ¬ (𝐹𝑥) ∈ 𝐵) → (𝐹𝑥) ∈ {∅})
44 elsni 4165 . . . . . . . . . 10 ((𝐹𝑥) ∈ {∅} → (𝐹𝑥) = ∅)
4543, 44syl 17 . . . . . . . . 9 (((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ 𝑥𝐴) ∧ ¬ (𝐹𝑥) ∈ 𝐵) → (𝐹𝑥) = ∅)
4645adantllr 754 . . . . . . . 8 ((((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) ∧ 𝑥𝐴) ∧ ¬ (𝐹𝑥) ∈ 𝐵) → (𝐹𝑥) = ∅)
47 neq0 3906 . . . . . . . . . . . . 13 𝐵 = ∅ ↔ ∃𝑦 𝑦𝐵)
4847biimpi 206 . . . . . . . . . . . 12 𝐵 = ∅ → ∃𝑦 𝑦𝐵)
4948adantr 481 . . . . . . . . . . 11 ((¬ 𝐵 = ∅ ∧ (𝐹𝑥) = ∅) → ∃𝑦 𝑦𝐵)
50 simpr 477 . . . . . . . . . . . . . . 15 (((𝐹𝑥) = ∅ ∧ 𝑦𝐵) → 𝑦𝐵)
51 id 22 . . . . . . . . . . . . . . . . 17 ((𝐹𝑥) = ∅ → (𝐹𝑥) = ∅)
52 0ss 3944 . . . . . . . . . . . . . . . . . 18 ∅ ⊆ 𝑦
5352a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐹𝑥) = ∅ → ∅ ⊆ 𝑦)
5451, 53eqsstrd 3618 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) = ∅ → (𝐹𝑥) ⊆ 𝑦)
5554adantr 481 . . . . . . . . . . . . . . 15 (((𝐹𝑥) = ∅ ∧ 𝑦𝐵) → (𝐹𝑥) ⊆ 𝑦)
5650, 55jca 554 . . . . . . . . . . . . . 14 (((𝐹𝑥) = ∅ ∧ 𝑦𝐵) → (𝑦𝐵 ∧ (𝐹𝑥) ⊆ 𝑦))
5756ex 450 . . . . . . . . . . . . 13 ((𝐹𝑥) = ∅ → (𝑦𝐵 → (𝑦𝐵 ∧ (𝐹𝑥) ⊆ 𝑦)))
5857adantl 482 . . . . . . . . . . . 12 ((¬ 𝐵 = ∅ ∧ (𝐹𝑥) = ∅) → (𝑦𝐵 → (𝑦𝐵 ∧ (𝐹𝑥) ⊆ 𝑦)))
5958eximdv 1843 . . . . . . . . . . 11 ((¬ 𝐵 = ∅ ∧ (𝐹𝑥) = ∅) → (∃𝑦 𝑦𝐵 → ∃𝑦(𝑦𝐵 ∧ (𝐹𝑥) ⊆ 𝑦)))
6049, 59mpd 15 . . . . . . . . . 10 ((¬ 𝐵 = ∅ ∧ (𝐹𝑥) = ∅) → ∃𝑦(𝑦𝐵 ∧ (𝐹𝑥) ⊆ 𝑦))
61 df-rex 2913 . . . . . . . . . 10 (∃𝑦𝐵 (𝐹𝑥) ⊆ 𝑦 ↔ ∃𝑦(𝑦𝐵 ∧ (𝐹𝑥) ⊆ 𝑦))
6260, 61sylibr 224 . . . . . . . . 9 ((¬ 𝐵 = ∅ ∧ (𝐹𝑥) = ∅) → ∃𝑦𝐵 (𝐹𝑥) ⊆ 𝑦)
6362ad4ant24 1295 . . . . . . . 8 ((((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) ∧ 𝑥𝐴) ∧ (𝐹𝑥) = ∅) → ∃𝑦𝐵 (𝐹𝑥) ⊆ 𝑦)
6437, 46, 63syl2anc 692 . . . . . . 7 ((((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) ∧ 𝑥𝐴) ∧ ¬ (𝐹𝑥) ∈ 𝐵) → ∃𝑦𝐵 (𝐹𝑥) ⊆ 𝑦)
6536, 64pm2.61dan 831 . . . . . 6 (((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) ∧ 𝑥𝐴) → ∃𝑦𝐵 (𝐹𝑥) ⊆ 𝑦)
6665ralrimiva 2960 . . . . 5 ((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) → ∀𝑥𝐴𝑦𝐵 (𝐹𝑥) ⊆ 𝑦)
67 iunss2 4531 . . . . 5 (∀𝑥𝐴𝑦𝐵 (𝐹𝑥) ⊆ 𝑦 𝑥𝐴 (𝐹𝑥) ⊆ 𝑦𝐵 𝑦)
6866, 67syl 17 . . . 4 ((𝐹:𝐴onto→(𝐵 ∪ {∅}) ∧ ¬ 𝐵 = ∅) → 𝑥𝐴 (𝐹𝑥) ⊆ 𝑦𝐵 𝑦)
6931, 68pm2.61dan 831 . . 3 (𝐹:𝐴onto→(𝐵 ∪ {∅}) → 𝑥𝐴 (𝐹𝑥) ⊆ 𝑦𝐵 𝑦)
7013, 69eqssd 3600 . 2 (𝐹:𝐴onto→(𝐵 ∪ {∅}) → 𝑦𝐵 𝑦 = 𝑥𝐴 (𝐹𝑥))
712, 70eqtrd 2655 1 (𝐹:𝐴onto→(𝐵 ∪ {∅}) → 𝐵 = 𝑥𝐴 (𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1987  wral 2907  wrex 2908  cun 3553  wss 3555  c0 3891  {csn 4148   cuni 4402   ciun 4485  ontowfo 5845  cfv 5847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-fo 5853  df-fv 5855
This theorem is referenced by:  ismeannd  39991
  Copyright terms: Public domain W3C validator