Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frecseq123 Structured version   Visualization version   GIF version

Theorem frecseq123 32104
Description: Equality theorem for founded recursion generator. (Contributed by Scott Fenton, 23-Dec-2021.)
Assertion
Ref Expression
frecseq123 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → frecs(𝑅, 𝐴, 𝐹) = frecs(𝑆, 𝐵, 𝐺))

Proof of Theorem frecseq123
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1132 . . . . . . . 8 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → 𝐴 = 𝐵)
21sseq2d 3774 . . . . . . 7 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (𝑥𝐴𝑥𝐵))
3 equid 2094 . . . . . . . . . . 11 𝑦 = 𝑦
4 predeq123 5842 . . . . . . . . . . 11 ((𝑅 = 𝑆𝐴 = 𝐵𝑦 = 𝑦) → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑆, 𝐵, 𝑦))
53, 4mp3an3 1562 . . . . . . . . . 10 ((𝑅 = 𝑆𝐴 = 𝐵) → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑆, 𝐵, 𝑦))
653adant3 1127 . . . . . . . . 9 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑆, 𝐵, 𝑦))
76sseq1d 3773 . . . . . . . 8 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥))
87ralbidv 3124 . . . . . . 7 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥))
92, 8anbi12d 749 . . . . . 6 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ↔ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥)))
10 simp3 1133 . . . . . . . . . 10 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → 𝐹 = 𝐺)
1110oveqd 6831 . . . . . . . . 9 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))
126reseq2d 5551 . . . . . . . . . 10 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ↾ Pred(𝑆, 𝐵, 𝑦)))
1312oveq2d 6830 . . . . . . . . 9 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))
1411, 13eqtrd 2794 . . . . . . . 8 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))
1514eqeq2d 2770 . . . . . . 7 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → ((𝑓𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦)))))
1615ralbidv 3124 . . . . . 6 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦)))))
179, 163anbi23d 1551 . . . . 5 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → ((𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑓 Fn 𝑥 ∧ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))))
1817exbidv 1999 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))))
1918abbidv 2879 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))})
2019unieqd 4598 . 2 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))})
21 df-frecs 32103 . 2 frecs(𝑅, 𝐴, 𝐹) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
22 df-frecs 32103 . 2 frecs(𝑆, 𝐵, 𝐺) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))}
2320, 21, 223eqtr4g 2819 1 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → frecs(𝑅, 𝐴, 𝐹) = frecs(𝑆, 𝐵, 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1632  wex 1853  {cab 2746  wral 3050  wss 3715   cuni 4588  cres 5268  Predcpred 5840   Fn wfn 6044  cfv 6049  (class class class)co 6814  frecscfrecs 32102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-xp 5272  df-cnv 5274  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-iota 6012  df-fv 6057  df-ov 6817  df-frecs 32103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator