![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpoidinvlem1 | Structured version Visualization version GIF version |
Description: Lemma for grpoidinv 27667. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpfo.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
grpoidinvlem1 | ⊢ (((𝐺 ∈ GrpOp ∧ (𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑈𝐺𝐴) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ ((𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) | |
2 | 1 | 3anidm23 1530 | . . . 4 ⊢ ((𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) |
3 | grpfo.1 | . . . . 5 ⊢ 𝑋 = ran 𝐺 | |
4 | 3 | grpoass 27662 | . . . 4 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝑌𝐺𝐴)𝐺𝐴) = (𝑌𝐺(𝐴𝐺𝐴))) |
5 | 2, 4 | sylan2 492 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ (𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝑌𝐺𝐴)𝐺𝐴) = (𝑌𝐺(𝐴𝐺𝐴))) |
6 | 5 | adantr 472 | . 2 ⊢ (((𝐺 ∈ GrpOp ∧ (𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → ((𝑌𝐺𝐴)𝐺𝐴) = (𝑌𝐺(𝐴𝐺𝐴))) |
7 | oveq1 6816 | . . 3 ⊢ ((𝑌𝐺𝐴) = 𝑈 → ((𝑌𝐺𝐴)𝐺𝐴) = (𝑈𝐺𝐴)) | |
8 | 7 | ad2antrl 766 | . 2 ⊢ (((𝐺 ∈ GrpOp ∧ (𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → ((𝑌𝐺𝐴)𝐺𝐴) = (𝑈𝐺𝐴)) |
9 | oveq2 6817 | . . . 4 ⊢ ((𝐴𝐺𝐴) = 𝐴 → (𝑌𝐺(𝐴𝐺𝐴)) = (𝑌𝐺𝐴)) | |
10 | 9 | ad2antll 767 | . . 3 ⊢ (((𝐺 ∈ GrpOp ∧ (𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑌𝐺(𝐴𝐺𝐴)) = (𝑌𝐺𝐴)) |
11 | simprl 811 | . . 3 ⊢ (((𝐺 ∈ GrpOp ∧ (𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑌𝐺𝐴) = 𝑈) | |
12 | 10, 11 | eqtrd 2790 | . 2 ⊢ (((𝐺 ∈ GrpOp ∧ (𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑌𝐺(𝐴𝐺𝐴)) = 𝑈) |
13 | 6, 8, 12 | 3eqtr3d 2798 | 1 ⊢ (((𝐺 ∈ GrpOp ∧ (𝑌 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑈𝐺𝐴) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1628 ∈ wcel 2135 ran crn 5263 (class class class)co 6809 GrpOpcgr 27648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pr 5051 ax-un 7110 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ral 3051 df-rex 3052 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4585 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-id 5170 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-fo 6051 df-fv 6053 df-ov 6812 df-grpo 27652 |
This theorem is referenced by: grpoidinvlem3 27665 |
Copyright terms: Public domain | W3C validator |