HomeHome Metamath Proof Explorer
Theorem List (p. 283 of 450)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28695)
  Hilbert Space Explorer  Hilbert Space Explorer
(28696-30218)
  Users' Mathboxes  Users' Mathboxes
(30219-44926)
 

Theorem List for Metamath Proof Explorer - 28201-28300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremex-an 28201 Example for df-an 399. Example by David A. Wheeler. (Contributed by Mario Carneiro, 9-May-2015.)
(2 = 2 ∧ 3 = 3)
 
Theoremex-dif 28202 Example for df-dif 3939. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
({1, 3} ∖ {1, 8}) = {3}
 
Theoremex-un 28203 Example for df-un 3941. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
({1, 3} ∪ {1, 8}) = {1, 3, 8}
 
Theoremex-in 28204 Example for df-in 3943. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
({1, 3} ∩ {1, 8}) = {1}
 
Theoremex-uni 28205 Example for df-uni 4839. Example by David A. Wheeler. (Contributed by Mario Carneiro, 2-Jul-2016.)
{{1, 3}, {1, 8}} = {1, 3, 8}
 
Theoremex-ss 28206 Example for df-ss 3952. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
{1, 2} ⊆ {1, 2, 3}
 
Theoremex-pss 28207 Example for df-pss 3954. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
{1, 2} ⊊ {1, 2, 3}
 
Theoremex-pw 28208 Example for df-pw 4541. Example by David A. Wheeler. (Contributed by Mario Carneiro, 2-Jul-2016.)
(𝐴 = {3, 5, 7} → 𝒫 𝐴 = (({∅} ∪ {{3}, {5}, {7}}) ∪ ({{3, 5}, {3, 7}, {5, 7}} ∪ {{3, 5, 7}})))
 
Theoremex-pr 28209 Example for df-pr 4570. (Contributed by Mario Carneiro, 7-May-2015.)
(𝐴 ∈ {1, -1} → (𝐴↑2) = 1)
 
Theoremex-br 28210 Example for df-br 5067. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
(𝑅 = {⟨2, 6⟩, ⟨3, 9⟩} → 3𝑅9)
 
Theoremex-opab 28211* Example for df-opab 5129. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
(𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ (𝑥 + 1) = 𝑦)} → 3𝑅4)
 
Theoremex-eprel 28212 Example for df-eprel 5465. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
5 E {1, 5}
 
Theoremex-id 28213 Example for df-id 5460. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
(5 I 5 ∧ ¬ 4 I 5)
 
Theoremex-po 28214 Example for df-po 5474. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
( < Po ℝ ∧ ¬ ≤ Po ℝ)
 
Theoremex-xp 28215 Example for df-xp 5561. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
({1, 5} × {2, 7}) = ({⟨1, 2⟩, ⟨1, 7⟩} ∪ {⟨5, 2⟩, ⟨5, 7⟩})
 
Theoremex-cnv 28216 Example for df-cnv 5563. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
{⟨2, 6⟩, ⟨3, 9⟩} = {⟨6, 2⟩, ⟨9, 3⟩}
 
Theoremex-co 28217 Example for df-co 5564. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
((exp ∘ cos)‘0) = e
 
Theoremex-dm 28218 Example for df-dm 5565. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
(𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → dom 𝐹 = {2, 3})
 
Theoremex-rn 28219 Example for df-rn 5566. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
(𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → ran 𝐹 = {6, 9})
 
Theoremex-res 28220 Example for df-res 5567. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = {⟨2, 6⟩})
 
Theoremex-ima 28221 Example for df-ima 5568. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
((𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} ∧ 𝐵 = {1, 2}) → (𝐹𝐵) = {6})
 
Theoremex-fv 28222 Example for df-fv 6363. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.)
(𝐹 = {⟨2, 6⟩, ⟨3, 9⟩} → (𝐹‘3) = 9)
 
Theoremex-1st 28223 Example for df-1st 7689. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
(1st ‘⟨3, 4⟩) = 3
 
Theoremex-2nd 28224 Example for df-2nd 7690. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
(2nd ‘⟨3, 4⟩) = 4
 
Theorem1kp2ke3k 28225 Example for df-dec 12100, 1000 + 2000 = 3000.

This proof disproves (by counterexample) the assertion of Hao Wang, who stated, "There is a theorem in the primitive notation of set theory that corresponds to the arithmetic theorem 1000 + 2000 = 3000. The formula would be forbiddingly long... even if (one) knows the definitions and is asked to simplify the long formula according to them, chances are he will make errors and arrive at some incorrect result." (Hao Wang, "Theory and practice in mathematics" , In Thomas Tymoczko, editor, New Directions in the Philosophy of Mathematics, pp 129-152, Birkauser Boston, Inc., Boston, 1986. (QA8.6.N48). The quote itself is on page 140.)

This is noted in Metamath: A Computer Language for Pure Mathematics by Norman Megill (2007) section 1.1.3. Megill then states, "A number of writers have conveyed the impression that the kind of absolute rigor provided by Metamath is an impossible dream, suggesting that a complete, formal verification of a typical theorem would take millions of steps in untold volumes of books... These writers assume, however, that in order to achieve the kind of complete formal verification they desire one must break down a proof into individual primitive steps that make direct reference to the axioms. This is not necessary. There is no reason not to make use of previously proved theorems rather than proving them over and over... A hierarchy of theorems and definitions permits an exponential growth in the formula sizes and primitive proof steps to be described with only a linear growth in the number of symbols used. Of course, this is how ordinary informal mathematics is normally done anyway, but with Metamath it can be done with absolute rigor and precision."

The proof here starts with (2 + 1) = 3, commutes it, and repeatedly multiplies both sides by ten. This is certainly longer than traditional mathematical proofs, e.g., there are a number of steps explicitly shown here to show that we're allowed to do operations such as multiplication. However, while longer, the proof is clearly a manageable size - even though every step is rigorously derived all the way back to the primitive notions of set theory and logic. And while there's a risk of making errors, the many independent verifiers make it much less likely that an incorrect result will be accepted.

This proof heavily relies on the decimal constructor df-dec 12100 developed by Mario Carneiro in 2015. The underlying Metamath language has an intentionally very small set of primitives; it doesn't even have a built-in construct for numbers. Instead, the digits are defined using these primitives, and the decimal constructor is used to make it easy to express larger numbers as combinations of digits.

(Contributed by David A. Wheeler, 29-Jun-2016.) (Shortened by Mario Carneiro using the arithmetic algorithm in mmj2, 30-Jun-2016.)

(1000 + 2000) = 3000
 
Theoremex-fl 28226 Example for df-fl 13163. Example by David A. Wheeler. (Contributed by Mario Carneiro, 18-Jun-2015.)
((⌊‘(3 / 2)) = 1 ∧ (⌊‘-(3 / 2)) = -2)
 
Theoremex-ceil 28227 Example for df-ceil 13164. (Contributed by AV, 4-Sep-2021.)
((⌈‘(3 / 2)) = 2 ∧ (⌈‘-(3 / 2)) = -1)
 
Theoremex-mod 28228 Example for df-mod 13239. (Contributed by AV, 3-Sep-2021.)
((5 mod 3) = 2 ∧ (-7 mod 2) = 1)
 
Theoremex-exp 28229 Example for df-exp 13431. (Contributed by AV, 4-Sep-2021.)
((5↑2) = 25 ∧ (-3↑-2) = (1 / 9))
 
Theoremex-fac 28230 Example for df-fac 13635. (Contributed by AV, 4-Sep-2021.)
(!‘5) = 120
 
Theoremex-bc 28231 Example for df-bc 13664. (Contributed by AV, 4-Sep-2021.)
(5C3) = 10
 
Theoremex-hash 28232 Example for df-hash 13692. (Contributed by AV, 4-Sep-2021.)
(♯‘{0, 1, 2}) = 3
 
Theoremex-sqrt 28233 Example for df-sqrt 14594. (Contributed by AV, 4-Sep-2021.)
(√‘25) = 5
 
Theoremex-abs 28234 Example for df-abs 14595. (Contributed by AV, 4-Sep-2021.)
(abs‘-2) = 2
 
Theoremex-dvds 28235 Example for df-dvds 15608: 3 divides into 6. (Contributed by David A. Wheeler, 19-May-2015.)
3 ∥ 6
 
Theoremex-gcd 28236 Example for df-gcd 15844. (Contributed by AV, 5-Sep-2021.)
(-6 gcd 9) = 3
 
Theoremex-lcm 28237 Example for df-lcm 15934. (Contributed by AV, 5-Sep-2021.)
(6 lcm 9) = 18
 
Theoremex-prmo 28238 Example for df-prmo 16368: (#p‘10) = 2 · 3 · 5 · 7. (Contributed by AV, 6-Sep-2021.)
(#p10) = 210
 
17.1.5  Other examples
 
Theoremaevdemo 28239* Proof illustrating the comment of aev2 2063. (Contributed by BJ, 30-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑦 → ((∃𝑎𝑏 𝑐 = 𝑑 ∨ ∃𝑒 𝑓 = 𝑔) ∧ ∀(𝑖 = 𝑗𝑘 = 𝑙)))
 
Theoremex-ind-dvds 28240 Example of a proof by induction (divisibility result). (Contributed by Stanislas Polu, 9-Mar-2020.) (Revised by BJ, 24-Mar-2020.)
(𝑁 ∈ ℕ0 → 3 ∥ ((4↑𝑁) + 2))
 
Theoremex-fpar 28241 Formalized example provided in the comment for fpar 7811. (Contributed by AV, 3-Jan-2024.)
𝐻 = (((1st ↾ (V × V)) ∘ (𝐹 ∘ (1st ↾ (V × V)))) ∩ ((2nd ↾ (V × V)) ∘ (𝐺 ∘ (2nd ↾ (V × V)))))    &   𝐴 = (0[,)+∞)    &   𝐵 = ℝ    &   𝐹 = (√ ↾ 𝐴)    &   𝐺 = (sin ↾ 𝐵)       ((𝑋𝐴𝑌𝐵) → (𝑋( + ∘ 𝐻)𝑌) = ((√‘𝑋) + (sin‘𝑌)))
 
17.2  Humor
 
17.2.1  April Fool's theorem
 
Theoremavril1 28242 Poisson d'Avril's Theorem. This theorem is noted for its Selbstdokumentieren property, which means, literally, "self-documenting" and recalls the principle of quidquid german dictum sit, altum viditur, often used in set theory. Starting with the seemingly simple yet profound fact that any object 𝑥 equals itself (proved by Tarski in 1965; see Lemma 6 of [Tarski] p. 68), we demonstrate that the power set of the real numbers, as a relation on the value of the imaginary unit, does not conjoin with an empty relation on the product of the additive and multiplicative identity elements, leading to this startling conclusion that has left even seasoned professional mathematicians scratching their heads. (Contributed by Prof. Loof Lirpa, 1-Apr-2005.) (Proof modification is discouraged.) (New usage is discouraged.)

A reply to skeptics can be found at mmnotes.txt, under the 1-Apr-2006 entry.

¬ (𝐴𝒫 ℝ(i‘1) ∧ 𝐹∅(0 · 1))
 
Theorem2bornot2b 28243 The law of excluded middle. Act III, Theorem 1 of Shakespeare, Hamlet, Prince of Denmark (1602). Its author leaves its proof as an exercise for the reader - "To be, or not to be: that is the question" - starting a trend that has become standard in modern-day textbooks, serving to make the frustrated reader feel inferior, or in some cases to mask the fact that the author does not know its solution. (Contributed by Prof. Loof Lirpa, 1-Apr-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
(2 · 𝐵 ∨ ¬ 2 · 𝐵)
 
Theoremhelloworld 28244 The classic "Hello world" benchmark has been translated into 314 computer programming languages - see http://www.roesler-ac.de/wolfram/hello.htm. However, for many years it eluded a proof that it is more than just a conjecture, even though a wily mathematician once claimed, "I have discovered a truly marvelous proof of this, which this margin is too narrow to contain." Using an IBM 709 mainframe, a team of mathematicians led by Prof. Loof Lirpa, at the New College of Tahiti, were finally able put it rest with a remarkably short proof only 4 lines long. (Contributed by Prof. Loof Lirpa, 1-Apr-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
¬ ( ∈ (𝐿𝐿0) ∧ 𝑊∅(R1𝑑))
 
Theorem1p1e2apr1 28245 One plus one equals two. Using proof-shortening techniques pioneered by Mr. Mel L. O'Cat, along with the latest supercomputer technology, Prof. Loof Lirpa and colleagues were able to shorten Whitehead and Russell's 360-page proof that 1+1=2 in Principia Mathematica to this remarkable proof only two steps long, thus establishing a new world's record for this famous theorem. (Contributed by Prof. Loof Lirpa, 1-Apr-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
(1 + 1) = 2
 
Theoremeqid1 28246 Law of identity (reflexivity of class equality). Theorem 6.4 of [Quine] p. 41.

This law is thought to have originated with Aristotle (Metaphysics, Book VII, Part 17). It is one of the three axioms of Ayn Rand's philosophy (Atlas Shrugged, Part Three, Chapter VII). While some have proposed extending Rand's axiomatization to include Compassion and Kindness, others fear that such an extension may flirt with logical inconsistency. (Contributed by Stefan Allan, 1-Apr-2009.) (Proof modification is discouraged.) (New usage is discouraged.)

𝐴 = 𝐴
 
Theorem1div0apr 28247 Division by zero is forbidden! If we try, we encounter the DO NOT ENTER sign, which in mathematics means it is foolhardy to venture any further, possibly putting the underlying fabric of reality at risk. Based on a dare by David A. Wheeler. (Contributed by Mario Carneiro, 1-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
(1 / 0) = ∅
 
Theoremtopnfbey 28248 Nothing seems to be impossible to Prof. Lirpa. After years of intensive research, he managed to find a proof that when given a chance to reach infinity, one could indeed go beyond, thus giving formal soundness to Buzz Lightyear's motto "To infinity... and beyond!" (Contributed by Prof. Loof Lirpa, 1-Apr-2020.) (Revised by Thierry Arnoux, 2-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐵 ∈ (0...+∞) → +∞ < 𝐵)
 
Theorem9p10ne21 28249 9 + 10 is not equal to 21. This disproves a popular meme which asserts that 9 + 10 does equal 21. See https://www.quora.com/Can-someone-try-to-prove-to-me-that-9+10-21 for attempts to prove that 9 + 10 = 21, and see https://tinyurl.com/9p10e21 for the history of the 9 + 10 = 21 meme. (Contributed by BTernaryTau, 25-Aug-2023.)
(9 + 10) ≠ 21
 
Theorem9p10ne21fool 28250 9 + 10 equals 21. This astonishing thesis lives as a meme on the internet, and may be believed by quite some people. At least repeated requests to falsify it are a permanent part of the story. Prof. Loof Lirpa did not rest until he finally came up with a computer verifiable mathematical proof, that only a fool can think so. (Contributed by Prof. Loof Lirpa, 26-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
((9 + 10) = 21 → 𝐹∅(0 · 1))
 
17.3  (Future - to be reviewed and classified)
 
17.3.1  Planar incidence geometry
 
Syntaxcplig 28251 Extend class notation with the class of all planar incidence geometries.
class Plig
 
Definitiondf-plig 28252* Define the class of planar incidence geometries. We use Hilbert's axioms and adapt them to planar geometry. We use for the incidence relation. We could have used a generic binary relation, but using allows us to reuse previous results. Much of what follows is directly borrowed from Aitken, Incidence-Betweenness Geometry, 2008, http://public.csusm.edu/aitken_html/m410/betweenness.08.pdf.

The class Plig is the class of planar incidence geometries, where a planar incidence geometry is defined as a set of lines satisfying three axioms. In the definition below, 𝑥 denotes a planar incidence geometry, so 𝑥 denotes the union of its lines, that is, the set of points in the plane, 𝑙 denotes a line, and 𝑎, 𝑏, 𝑐 denote points. Therefore, the axioms are: 1) for all pairs of (distinct) points, there exists a unique line containing them; 2) all lines contain at least two points; 3) there exist three non-collinear points. (Contributed by FL, 2-Aug-2009.)

Plig = {𝑥 ∣ (∀𝑎 𝑥𝑏 𝑥(𝑎𝑏 → ∃!𝑙𝑥 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝑥𝑎 𝑥𝑏 𝑥(𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎 𝑥𝑏 𝑥𝑐 𝑥𝑙𝑥 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))}
 
Theoremisplig 28253* The predicate "is a planar incidence geometry" for sets. (Contributed by FL, 2-Aug-2009.)
𝑃 = 𝐺       (𝐺𝐴 → (𝐺 ∈ Plig ↔ (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))))
 
Theoremispligb 28254* The predicate "is a planar incidence geometry". (Contributed by BJ, 2-Dec-2021.)
𝑃 = 𝐺       (𝐺 ∈ Plig ↔ (𝐺 ∈ V ∧ (∀𝑎𝑃𝑏𝑃 (𝑎𝑏 → ∃!𝑙𝐺 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝐺𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))))
 
Theoremtncp 28255* In any planar incidence geometry, there exist three non-collinear points. (Contributed by FL, 3-Aug-2009.)
𝑃 = 𝐺       (𝐺 ∈ Plig → ∃𝑎𝑃𝑏𝑃𝑐𝑃𝑙𝐺 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))
 
Theoreml2p 28256* For any line in a planar incidence geometry, there exist two different points on the line. (Contributed by AV, 28-Nov-2021.)
𝑃 = 𝐺       ((𝐺 ∈ Plig ∧ 𝐿𝐺) → ∃𝑎𝑃𝑏𝑃 (𝑎𝑏𝑎𝐿𝑏𝐿))
 
Theoremlpni 28257* For any line in a planar incidence geometry, there exists a point not on the line. (Contributed by Jeff Hankins, 15-Aug-2009.)
𝑃 = 𝐺       ((𝐺 ∈ Plig ∧ 𝐿𝐺) → ∃𝑎𝑃 𝑎𝐿)
 
Theoremnsnlplig 28258 There is no "one-point line" in a planar incidence geometry. (Contributed by BJ, 2-Dec-2021.) (Proof shortened by AV, 5-Dec-2021.)
(𝐺 ∈ Plig → ¬ {𝐴} ∈ 𝐺)
 
TheoremnsnlpligALT 28259 Alternate version of nsnlplig 28258 using the predicate instead of ¬ ∈ and whose proof is shorter. (Contributed by AV, 5-Dec-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐺 ∈ Plig → {𝐴} ∉ 𝐺)
 
Theoremn0lplig 28260 There is no "empty line" in a planar incidence geometry. (Contributed by AV, 28-Nov-2021.) (Proof shortened by BJ, 2-Dec-2021.)
(𝐺 ∈ Plig → ¬ ∅ ∈ 𝐺)
 
Theoremn0lpligALT 28261 Alternate version of n0lplig 28260 using the predicate instead of ¬ ∈ and whose proof bypasses nsnlplig 28258. (Contributed by AV, 28-Nov-2021.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐺 ∈ Plig → ∅ ∉ 𝐺)
 
Theoremeulplig 28262* Through two distinct points of a planar incidence geometry, there is a unique line. (Contributed by BJ, 2-Dec-2021.)
𝑃 = 𝐺       ((𝐺 ∈ Plig ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴𝐵)) → ∃!𝑙𝐺 (𝐴𝑙𝐵𝑙))
 
Theorempliguhgr 28263 Any planar incidence geometry 𝐺 can be regarded as a hypergraph with its points as vertices and its lines as edges. See incistruhgr 26864 for a generalization of this case for arbitrary incidence structures (planar incidence geometries are such incidence structures). (Proposed by Gerard Lang, 24-Nov-2021.) (Contributed by AV, 28-Nov-2021.)
(𝐺 ∈ Plig → ⟨ 𝐺, ( I ↾ 𝐺)⟩ ∈ UHGraph)
 
17.3.2  Aliases kept to prevent broken links

This section contains a few aliases that we temporarily keep to prevent broken links. If you land on any of these, please let the originating site and/or us know that the link that made you land here should be changed.

 
Theoremdummylink 28264 Alias for a1ii 2 that may be referenced in some older works, and kept here to prevent broken links.

If you landed here, please let the originating site and/or us know that the link that made you land here should be changed to a link to a1ii 2.

(Contributed by NM, 7-Feb-2006.) (Proof modification is discouraged.) (New usage is discouraged.)

𝜑    &   𝜓       𝜑
 
Theoremid1 28265 Alias for idALT 23 that may be referenced in some older works, and kept here to prevent broken links.

If you landed here, please let the originating site and/or us know that the link that made you land here should be changed to a link to idALT 23.

(Contributed by NM, 30-Sep-1992.) (Proof modification is discouraged.) (New usage is discouraged.)

(𝜑𝜑)
 
PART 18  COMPLEX TOPOLOGICAL VECTOR SPACES (DEPRECATED)

The intent is for this deprecated section to be deleted once its theorems have extensible structure versions (or are not useful). You can make a list of "terminal" theorems (i.e., theorems not referenced by anything else) and for each theorem see if there exists an extensible structure version (or decide it is not useful), and if so, delete it. Then, repeat this recursively. One way to search for terminal theorems is to log the output ("MM> OPEN LOG xxx.txt") of "MM> SHOW USAGE <label-match>" in the Metamath program and search for "(None)".

 
18.1  Additional material on group theory (deprecated)

This section contains an earlier development of groups that was defined before extensible structures were introduced.

The intent is for this deprecated section to be deleted once the corresponding definitions and theorems for complex topological vector spaces, which are using them, are revised accordingly.

 
18.1.1  Definitions and basic properties for groups
 
Syntaxcgr 28266 Extend class notation with the class of all group operations.
class GrpOp
 
Syntaxcgi 28267 Extend class notation with a function mapping a group operation to the group's identity element.
class GId
 
Syntaxcgn 28268 Extend class notation with a function mapping a group operation to the inverse function for the group.
class inv
 
Syntaxcgs 28269 Extend class notation with a function mapping a group operation to the division (or subtraction) operation for the group.
class /𝑔
 
Definitiondf-grpo 28270* Define the class of all group operations. The base set for a group can be determined from its group operation. Based on the definition in Exercise 28 of [Herstein] p. 54. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
GrpOp = {𝑔 ∣ ∃𝑡(𝑔:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝑔𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝑔𝑥) = 𝑢))}
 
Definitiondf-gid 28271* Define a function that maps a group operation to the group's identity element. (Contributed by FL, 5-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
GId = (𝑔 ∈ V ↦ (𝑢 ∈ ran 𝑔𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥)))
 
Definitiondf-ginv 28272* Define a function that maps a group operation to the group's inverse function. (Contributed by NM, 26-Oct-2006.) (New usage is discouraged.)
inv = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔 ↦ (𝑧 ∈ ran 𝑔(𝑧𝑔𝑥) = (GId‘𝑔))))
 
Definitiondf-gdiv 28273* Define a function that maps a group operation to the group's division (or subtraction) operation. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.)
/𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))))
 
Theoremisgrpo 28274* The predicate "is a group operation." Note that 𝑋 is the base set of the group. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
𝑋 = ran 𝐺       (𝐺𝐴 → (𝐺 ∈ GrpOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))))
 
Theoremisgrpoi 28275* Properties that determine a group operation. Read 𝑁 as 𝑁(𝑥). (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.)
𝑋 ∈ V    &   𝐺:(𝑋 × 𝑋)⟶𝑋    &   ((𝑥𝑋𝑦𝑋𝑧𝑋) → ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))    &   𝑈𝑋    &   (𝑥𝑋 → (𝑈𝐺𝑥) = 𝑥)    &   (𝑥𝑋𝑁𝑋)    &   (𝑥𝑋 → (𝑁𝐺𝑥) = 𝑈)       𝐺 ∈ GrpOp
 
Theoremgrpofo 28276 A group operation maps onto the group's underlying set. (Contributed by NM, 30-Oct-2006.) (New usage is discouraged.)
𝑋 = ran 𝐺       (𝐺 ∈ GrpOp → 𝐺:(𝑋 × 𝑋)–onto𝑋)
 
Theoremgrpocl 28277 Closure law for a group operation. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
𝑋 = ran 𝐺       ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
 
Theoremgrpolidinv 28278* A group has a left identity element, and every member has a left inverse. (Contributed by NM, 2-Nov-2006.) (New usage is discouraged.)
𝑋 = ran 𝐺       (𝐺 ∈ GrpOp → ∃𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ ∃𝑦𝑋 (𝑦𝐺𝑥) = 𝑢))
 
Theoremgrpon0 28279 The base set of a group is not empty. (Contributed by Szymon Jaroszewicz, 3-Apr-2007.) (New usage is discouraged.)
𝑋 = ran 𝐺       (𝐺 ∈ GrpOp → 𝑋 ≠ ∅)
 
Theoremgrpoass 28280 A group operation is associative. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
𝑋 = ran 𝐺       ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶)))
 
Theoremgrpoidinvlem1 28281 Lemma for grpoidinv 28285. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
𝑋 = ran 𝐺       (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑈𝐺𝐴) = 𝑈)
 
Theoremgrpoidinvlem2 28282 Lemma for grpoidinv 28285. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
𝑋 = ran 𝐺       (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑈𝐺𝑌) = 𝑌 ∧ (𝑌𝐺𝐴) = 𝑈)) → ((𝐴𝐺𝑌)𝐺(𝐴𝐺𝑌)) = (𝐴𝐺𝑌))
 
Theoremgrpoidinvlem3 28283* Lemma for grpoidinv 28285. (Contributed by NM, 11-Oct-2006.) (New usage is discouraged.)
𝑋 = ran 𝐺    &   (𝜑 ↔ ∀𝑥𝑋 (𝑈𝐺𝑥) = 𝑥)    &   (𝜓 ↔ ∀𝑥𝑋𝑧𝑋 (𝑧𝐺𝑥) = 𝑈)       ((((𝐺 ∈ GrpOp ∧ 𝑈𝑋) ∧ (𝜑𝜓)) ∧ 𝐴𝑋) → ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))
 
Theoremgrpoidinvlem4 28284* Lemma for grpoidinv 28285. (Contributed by NM, 14-Oct-2006.) (New usage is discouraged.)
𝑋 = ran 𝐺       (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) → (𝐴𝐺𝑈) = (𝑈𝐺𝐴))
 
Theoremgrpoidinv 28285* A group has a left and right identity element, and every member has a left and right inverse. (Contributed by NM, 14-Oct-2006.) (New usage is discouraged.)
𝑋 = ran 𝐺       (𝐺 ∈ GrpOp → ∃𝑢𝑋𝑥𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)))
 
Theoremgrpoideu 28286* The left identity element of a group is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by NM, 14-Oct-2006.) (New usage is discouraged.)
𝑋 = ran 𝐺       (𝐺 ∈ GrpOp → ∃!𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥)
 
Theoremgrporndm 28287 A group's range in terms of its domain. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.)
(𝐺 ∈ GrpOp → ran 𝐺 = dom dom 𝐺)
 
Theorem0ngrp 28288 The empty set is not a group. (Contributed by NM, 25-Apr-2007.) (New usage is discouraged.)
¬ ∅ ∈ GrpOp
 
Theoremgidval 28289* The value of the identity element of a group. (Contributed by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
𝑋 = ran 𝐺       (𝐺𝑉 → (GId‘𝐺) = (𝑢𝑋𝑥𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)))
 
Theoremgrpoidval 28290* Lemma for grpoidcl 28291 and others. (Contributed by NM, 5-Feb-2010.) (Proof shortened by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
𝑋 = ran 𝐺    &   𝑈 = (GId‘𝐺)       (𝐺 ∈ GrpOp → 𝑈 = (𝑢𝑋𝑥𝑋 (𝑢𝐺𝑥) = 𝑥))
 
Theoremgrpoidcl 28291 The identity element of a group belongs to the group. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
𝑋 = ran 𝐺    &   𝑈 = (GId‘𝐺)       (𝐺 ∈ GrpOp → 𝑈𝑋)
 
Theoremgrpoidinv2 28292* A group's properties using the explicit identity element. (Contributed by NM, 5-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
𝑋 = ran 𝐺    &   𝑈 = (GId‘𝐺)       ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
 
Theoremgrpolid 28293 The identity element of a group is a left identity. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
𝑋 = ran 𝐺    &   𝑈 = (GId‘𝐺)       ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑈𝐺𝐴) = 𝐴)
 
Theoremgrporid 28294 The identity element of a group is a right identity. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
𝑋 = ran 𝐺    &   𝑈 = (GId‘𝐺)       ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺𝑈) = 𝐴)
 
Theoremgrporcan 28295 Right cancellation law for groups. (Contributed by NM, 26-Oct-2006.) (New usage is discouraged.)
𝑋 = ran 𝐺       ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) ↔ 𝐴 = 𝐵))
 
Theoremgrpoinveu 28296* The left inverse element of a group is unique. Lemma 2.2.1(b) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
𝑋 = ran 𝐺    &   𝑈 = (GId‘𝐺)       ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈)
 
Theoremgrpoid 28297 Two ways of saying that an element of a group is the identity element. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.)
𝑋 = ran 𝐺    &   𝑈 = (GId‘𝐺)       ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴 = 𝑈 ↔ (𝐴𝐺𝐴) = 𝐴))
 
Theoremgrporn 28298 The range of a group operation. Useful for satisfying group base set hypotheses of the form 𝑋 = ran 𝐺. (Contributed by NM, 5-Nov-2006.) (New usage is discouraged.)
𝐺 ∈ GrpOp    &   dom 𝐺 = (𝑋 × 𝑋)       𝑋 = ran 𝐺
 
Theoremgrpoinvfval 28299* The inverse function of a group. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
𝑋 = ran 𝐺    &   𝑈 = (GId‘𝐺)    &   𝑁 = (inv‘𝐺)       (𝐺 ∈ GrpOp → 𝑁 = (𝑥𝑋 ↦ (𝑦𝑋 (𝑦𝐺𝑥) = 𝑈)))
 
Theoremgrpoinvval 28300* The inverse of a group element. (Contributed by NM, 26-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
𝑋 = ran 𝐺    &   𝑈 = (GId‘𝐺)    &   𝑁 = (inv‘𝐺)       ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-44926
  Copyright terms: Public domain < Previous  Next >