HomeHome Metamath Proof Explorer
Theorem List (p. 283 of 425)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-26947)
  Hilbert Space Explorer  Hilbert Space Explorer
(26948-28472)
  Users' Mathboxes  Users' Mathboxes
(28473-42426)
 

Theorem List for Metamath Proof Explorer - 28201-28300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempjscji 28201 The projection of orthogonal subspaces is the sum of the projections. (Contributed by NM, 11-Nov-2000.) (New usage is discouraged.)
𝐺C    &   𝐻C       (𝐺 ⊆ (⊥‘𝐻) → (proj‘(𝐺 𝐻)) = ((proj𝐺) +op (proj𝐻)))
 
Theorempjssumi 28202 The projection on a subspace sum is the sum of the projections. (Contributed by NM, 11-Nov-2000.) (New usage is discouraged.)
𝐺C    &   𝐻C       (𝐺 ⊆ (⊥‘𝐻) → (proj‘(𝐺 + 𝐻)) = ((proj𝐺) +op (proj𝐻)))
 
Theorempjssposi 28203* Projector ordering can be expressed by the subset relationship between their projection subspaces. (i)<->(iii) of Theorem 29.2 of [Halmos] p. 48. (Contributed by NM, 2-Jun-2006.) (New usage is discouraged.)
𝐺C    &   𝐻C       (∀𝑥 ∈ ℋ 0 ≤ ((((proj𝐻) −op (proj𝐺))‘𝑥) ·ih 𝑥) ↔ 𝐺𝐻)
 
Theorempjordi 28204* The definition of projector ordering in [Halmos] p. 42 is equivalent to the definition of projector ordering in [Beran] p. 110. (We will usually express projector ordering with the even simpler equivalent 𝐺𝐻; see pjssposi 28203). (Contributed by NM, 2-Jun-2006.) (New usage is discouraged.)
𝐺C    &   𝐻C       (∀𝑥 ∈ ℋ 0 ≤ ((((proj𝐻) −op (proj𝐺))‘𝑥) ·ih 𝑥) ↔ ((proj𝐺) “ ℋ) ⊆ ((proj𝐻) “ ℋ))
 
Theorempjssdif2i 28205 The projection subspace of the difference between two projectors. Part 2 of Theorem 29.3 of [Halmos] p. 48 (shortened with pjssposi 28203). (Contributed by NM, 2-Jun-2006.) (New usage is discouraged.)
𝐺C    &   𝐻C       (𝐺𝐻 ↔ ((proj𝐻) −op (proj𝐺)) = (proj‘(𝐻 ∩ (⊥‘𝐺))))
 
Theorempjssdif1i 28206 A necessary and sufficient condition for the difference between two projectors to be a projector. Part 1 of Theorem 29.3 of [Halmos] p. 48 (shortened with pjssposi 28203). (Contributed by NM, 2-Jun-2006.) (New usage is discouraged.)
𝐺C    &   𝐻C       (𝐺𝐻 ↔ ((proj𝐻) −op (proj𝐺)) ∈ ran proj)
 
Theorempjimai 28207 The image of a projection. Lemma 5 in Daniel Lehmann, "A presentation of Quantum Logic based on an and then connective" http://www.arxiv.org/pdf/quant-ph/0701113 p. 20. (Contributed by NM, 20-Jan-2007.) (New usage is discouraged.)
𝐴S    &   𝐵C       ((proj𝐵) “ 𝐴) = ((𝐴 + (⊥‘𝐵)) ∩ 𝐵)
 
Theorempjidmcoi 28208 A projection is idempotent. Property (ii) of [Beran] p. 109. (Contributed by NM, 1-Oct-2000.) (New usage is discouraged.)
𝐻C       ((proj𝐻) ∘ (proj𝐻)) = (proj𝐻)
 
Theorempjoccoi 28209 Composition of projections of a subspace and its orthocomplement. (Contributed by NM, 14-Nov-2000.) (New usage is discouraged.)
𝐻C       ((proj𝐻) ∘ (proj‘(⊥‘𝐻))) = 0hop
 
Theorempjtoi 28210 Subspace sum of projection and projection of orthocomplement. (Contributed by NM, 16-Nov-2000.) (New usage is discouraged.)
𝐻C       ((proj𝐻) +op (proj‘(⊥‘𝐻))) = (proj‘ ℋ)
 
Theorempjoci 28211 Projection of orthocomplement. First part of Theorem 27.3 of [Halmos] p. 45. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.)
𝐻C       ((proj‘ ℋ) −op (proj𝐻)) = (proj‘(⊥‘𝐻))
 
Theorempjidmco 28212 A projection operator is idempotent. Property (ii) of [Beran] p. 109. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.)
(𝐻C → ((proj𝐻) ∘ (proj𝐻)) = (proj𝐻))
 
Theoremdfpjop 28213 Definition of projection operator in [Hughes] p. 47, except that we do not need linearity to be explicit by virtue of hmoplin 27973. (Contributed by NM, 24-Apr-2006.) (Revised by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
(𝑇 ∈ ran proj ↔ (𝑇 ∈ HrmOp ∧ (𝑇𝑇) = 𝑇))
 
Theorempjhmopidm 28214 Two ways to express the set of all projection operators. (Contributed by NM, 24-Apr-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
ran proj = {𝑡 ∈ HrmOp ∣ (𝑡𝑡) = 𝑡}
 
Theoremelpjidm 28215 A projection operator is idempotent. Part of Theorem 26.1 of [Halmos] p. 43. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.)
(𝑇 ∈ ran proj → (𝑇𝑇) = 𝑇)
 
Theoremelpjhmop 28216 A projection operator is Hermitian. Part of Theorem 26.1 of [Halmos] p. 43. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.)
(𝑇 ∈ ran proj𝑇 ∈ HrmOp)
 
Theorem0leopj 28217 A projector is a positive operator. (Contributed by NM, 27-Sep-2008.) (New usage is discouraged.)
(𝑇 ∈ ran proj → 0hopop 𝑇)
 
Theorempjadj2 28218 A projector is self-adjoint. Property (i) of [Beran] p. 109. (Contributed by NM, 3-Jun-2006.) (New usage is discouraged.)
(𝑇 ∈ ran proj → (adj𝑇) = 𝑇)
 
Theorempjadj3 28219 A projector is self-adjoint. Property (i) of [Beran] p. 109. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.)
(𝐻C → (adj‘(proj𝐻)) = (proj𝐻))
 
Theoremelpjch 28220 Reconstruction of the subspace of a projection operator. Part of Theorem 26.2 of [Halmos] p. 44. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.)
(𝑇 ∈ ran proj → (ran 𝑇C𝑇 = (proj‘ran 𝑇)))
 
Theoremelpjrn 28221* Reconstruction of the subspace of a projection operator. (Contributed by NM, 24-Apr-2006.) (Revised by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
(𝑇 ∈ ran proj → ran 𝑇 = {𝑥 ∈ ℋ ∣ (𝑇𝑥) = 𝑥})
 
Theorempjinvari 28222 A closed subspace 𝐻 with projection 𝑇 is invariant under an operator 𝑆 iff 𝑆𝑇 = 𝑇𝑆𝑇. Theorem 27.1 of [Halmos] p. 45. (Contributed by NM, 24-Apr-2006.) (New usage is discouraged.)
𝑆: ℋ⟶ ℋ    &   𝐻C    &   𝑇 = (proj𝐻)       ((𝑆𝑇): ℋ⟶𝐻 ↔ (𝑆𝑇) = (𝑇 ∘ (𝑆𝑇)))
 
Theorempjin1i 28223 Lemma for Theorem 1.22 of Mittelstaedt, p. 20. (Contributed by NM, 22-Apr-2001.) (New usage is discouraged.)
𝐺C    &   𝐻C       (proj‘(𝐺𝐻)) = ((proj𝐺) ∘ (proj‘(𝐺𝐻)))
 
Theorempjin2i 28224 Lemma for Theorem 1.22 of Mittelstaedt, p. 20. (Contributed by NM, 22-Apr-2001.) (New usage is discouraged.)
𝐺C    &   𝐻C       (((proj𝐺) = ((proj𝐺) ∘ (proj𝐻)) ∧ (proj𝐻) = ((proj𝐻) ∘ (proj𝐺))) ↔ (proj𝐺) = (proj𝐻))
 
Theorempjin3i 28225 Lemma for Theorem 1.22 of Mittelstaedt, p. 20. (Contributed by NM, 22-Apr-2001.) (New usage is discouraged.)
𝐹C    &   𝐺C    &   𝐻C       (((proj𝐹) = ((proj𝐹) ∘ (proj𝐺)) ∧ (proj𝐹) = ((proj𝐹) ∘ (proj𝐻))) ↔ (proj𝐹) = ((proj𝐹) ∘ (proj‘(𝐺𝐻))))
 
Theorempjclem1 28226 Lemma for projection commutation theorem. (Contributed by NM, 16-Nov-2000.) (New usage is discouraged.)
𝐺C    &   𝐻C       (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ (proj𝐻)) = (proj‘(𝐺𝐻)))
 
Theorempjclem2 28227 Lemma for projection commutation theorem. (Contributed by NM, 17-Nov-2000.) (New usage is discouraged.)
𝐺C    &   𝐻C       (𝐺 𝐶 𝐻 → ((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)))
 
Theorempjclem3 28228 Lemma for projection commutation theorem. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.)
𝐺C    &   𝐻C       (((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) → ((proj𝐺) ∘ (proj‘(⊥‘𝐻))) = ((proj‘(⊥‘𝐻)) ∘ (proj𝐺)))
 
Theorempjclem4a 28229 Lemma for projection commutation theorem. (Contributed by NM, 2-Dec-2000.) (New usage is discouraged.)
𝐺C    &   𝐻C       (𝐴 ∈ (𝐺𝐻) → (((proj𝐺) ∘ (proj𝐻))‘𝐴) = 𝐴)
 
Theorempjclem4 28230 Lemma for projection commutation theorem. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.)
𝐺C    &   𝐻C       (((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) → ((proj𝐺) ∘ (proj𝐻)) = (proj‘(𝐺𝐻)))
 
Theorempjci 28231 Two subspaces commute iff their projections commute. Lemma 4 of [Kalmbach] p. 67. (Contributed by NM, 26-Nov-2000.) (New usage is discouraged.)
𝐺C    &   𝐻C       (𝐺 𝐶 𝐻 ↔ ((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)))
 
Theorempjcmul1i 28232 A necessary and sufficient condition for the product of two projectors to be a projector is that the projectors commute. Part 1 of Theorem 1 of [AkhiezerGlazman] p. 65. (Contributed by NM, 3-Jun-2006.) (New usage is discouraged.)
𝐺C    &   𝐻C       (((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) ↔ ((proj𝐺) ∘ (proj𝐻)) ∈ ran proj)
 
Theorempjcmul2i 28233 The projection subspace of the difference between two projectors. Part 2 of Theorem 1 of [AkhiezerGlazman] p. 65. (Contributed by NM, 3-Jun-2006.) (New usage is discouraged.)
𝐺C    &   𝐻C       (((proj𝐺) ∘ (proj𝐻)) = ((proj𝐻) ∘ (proj𝐺)) ↔ ((proj𝐺) ∘ (proj𝐻)) = (proj‘(𝐺𝐻)))
 
Theorempjcohocli 28234 Closure of composition of projection and Hilbert space operator. (Contributed by NM, 3-Dec-2000.) (New usage is discouraged.)
𝐻C    &   𝑇: ℋ⟶ ℋ       (𝐴 ∈ ℋ → (((proj𝐻) ∘ 𝑇)‘𝐴) ∈ 𝐻)
 
Theorempjadj2coi 28235 Adjoint of double composition of projections. Generalization of special case of Theorem 3.11(viii) of [Beran] p. 106. (Contributed by NM, 1-Dec-2000.) (New usage is discouraged.)
𝐹C    &   𝐺C    &   𝐻C       ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝐴) ·ih 𝐵) = (𝐴 ·ih ((((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹))‘𝐵)))
 
Theorempj2cocli 28236 Closure of double composition of projections. (Contributed by NM, 2-Dec-2000.) (New usage is discouraged.)
𝐹C    &   𝐺C    &   𝐻C       (𝐴 ∈ ℋ → ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝐴) ∈ 𝐹)
 
Theorempj3lem1 28237 Lemma for projection triplet theorem. (Contributed by NM, 2-Dec-2000.) (New usage is discouraged.)
𝐹C    &   𝐺C    &   𝐻C       (𝐴 ∈ ((𝐹𝐺) ∩ 𝐻) → ((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻))‘𝐴) = 𝐴)
 
Theorempj3si 28238 Stronger projection triplet theorem. (Contributed by NM, 2-Dec-2000.) (New usage is discouraged.)
𝐹C    &   𝐺C    &   𝐻C       (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ ran (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) ⊆ 𝐺) → (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (proj‘((𝐹𝐺) ∩ 𝐻)))
 
Theorempj3i 28239 Projection triplet theorem. (Contributed by NM, 2-Dec-2000.) (New usage is discouraged.)
𝐹C    &   𝐺C    &   𝐻C       (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐺) ∘ (proj𝐹)) ∘ (proj𝐻))) → (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (proj‘((𝐹𝐺) ∩ 𝐻)))
 
Theorempj3cor1i 28240 Projection triplet corollary. (Contributed by NM, 2-Dec-2000.) (New usage is discouraged.)
𝐹C    &   𝐺C    &   𝐻C       (((((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐺)) ∘ (proj𝐹)) ∧ (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐺) ∘ (proj𝐹)) ∘ (proj𝐻))) → (((proj𝐹) ∘ (proj𝐺)) ∘ (proj𝐻)) = (((proj𝐻) ∘ (proj𝐹)) ∘ (proj𝐺)))
 
Theorempjs14i 28241 Theorem S-14 of Watanabe, p. 486. (Contributed by NM, 26-Sep-2001.) (New usage is discouraged.)
𝐺C    &   𝐻C       (𝐴 ∈ ℋ → (norm‘(((proj𝐻) ∘ (proj𝐺))‘𝐴)) ≤ (norm‘((proj𝐺)‘𝐴)))
 
19.7  States on a Hilbert lattice and Godowski's equation
 
19.7.1  States on a Hilbert lattice
 
Definitiondf-st 28242* Define the set of states on a Hilbert lattice. Definition of [Kalmbach] p. 266. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.)
States = {𝑓 ∈ ((0[,]1) ↑𝑚 C ) ∣ ((𝑓‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦))))}
 
Definitiondf-hst 28243* Define the set of complex Hilbert-space-valued states on a Hilbert lattice. Definition of CH-states in [Mayet3] p. 9. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
CHStates = {𝑓 ∈ ( ℋ ↑𝑚 C ) ∣ ((norm‘(𝑓‘ ℋ)) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑓𝑥) ·ih (𝑓𝑦)) = 0 ∧ (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦)))))}
 
Theoremisst 28244* Property of a state. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
(𝑆 ∈ States ↔ (𝑆: C ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
 
Theoremishst 28245* Property of a complex Hilbert-space-valued state. Definition of CH-states in [Mayet3] p. 9. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
(𝑆 ∈ CHStates ↔ (𝑆: C ⟶ ℋ ∧ (norm‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
 
Theoremsticl 28246 [0, 1] closure of the value of a state. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
(𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ (0[,]1)))
 
Theoremstcl 28247 Real closure of the value of a state. (Contributed by NM, 24-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
(𝑆 ∈ States → (𝐴C → (𝑆𝐴) ∈ ℝ))
 
Theoremhstcl 28248 Closure of the value of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
((𝑆 ∈ CHStates ∧ 𝐴C ) → (𝑆𝐴) ∈ ℋ)
 
Theoremhst1a 28249 Unit value of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
(𝑆 ∈ CHStates → (norm‘(𝑆‘ ℋ)) = 1)
 
Theoremhstel2 28250 Properties of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
(((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))
 
Theoremhstorth 28251 Orthogonality property of a Hilbert-space-valued state. This is a key feature distinguishing it from a real-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
(((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → ((𝑆𝐴) ·ih (𝑆𝐵)) = 0)
 
Theoremhstosum 28252 Orthogonal sum property of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
(((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))
 
Theoremhstoc 28253 Sum of a Hilbert-space-valued state of a lattice element and its orthocomplement. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
((𝑆 ∈ CHStates ∧ 𝐴C ) → ((𝑆𝐴) + (𝑆‘(⊥‘𝐴))) = (𝑆‘ ℋ))
 
Theoremhstnmoc 28254 Sum of norms of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
((𝑆 ∈ CHStates ∧ 𝐴C ) → (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆‘(⊥‘𝐴)))↑2)) = 1)
 
Theoremstge0 28255 The value of a state is nonnegative. (Contributed by NM, 24-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
(𝑆 ∈ States → (𝐴C → 0 ≤ (𝑆𝐴)))
 
Theoremstle1 28256 The value of a state is less than or equal to one. (Contributed by NM, 24-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
(𝑆 ∈ States → (𝐴C → (𝑆𝐴) ≤ 1))
 
Theoremhstle1 28257 The norm of the value of a Hilbert-space-valued state is less than or equal to one. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
((𝑆 ∈ CHStates ∧ 𝐴C ) → (norm‘(𝑆𝐴)) ≤ 1)
 
Theoremhst1h 28258 The norm of a Hilbert-space-valued state equals one iff the state value equals the state value of the lattice unit. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) = 1 ↔ (𝑆𝐴) = (𝑆‘ ℋ)))
 
Theoremhst0h 28259 The norm of a Hilbert-space-valued state equals zero iff the state value equals zero. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.)
((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) = 0 ↔ (𝑆𝐴) = 0))
 
Theoremhstpyth 28260 Pythagorean property of a Hilbert-space-valued state for orthogonal vectors 𝐴 and 𝐵. (Contributed by NM, 26-Jun-2006.) (New usage is discouraged.)
(((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → ((norm‘(𝑆‘(𝐴 𝐵)))↑2) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆𝐵))↑2)))
 
Theoremhstle 28261 Ordering property of a Hilbert-space-valued state. (Contributed by NM, 26-Jun-2006.) (New usage is discouraged.)
(((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → (norm‘(𝑆𝐴)) ≤ (norm‘(𝑆𝐵)))
 
Theoremhstles 28262 Ordering property of a Hilbert-space-valued state. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.)
(((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴𝐵)) → ((norm‘(𝑆𝐴)) = 1 → (norm‘(𝑆𝐵)) = 1))
 
Theoremhstoh 28263 A Hilbert-space-valued state orthogonal to the state of the lattice unit is zero. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
((𝑆 ∈ CHStates ∧ 𝐴C ∧ ((𝑆𝐴) ·ih (𝑆‘ ℋ)) = 0) → (𝑆𝐴) = 0)
 
Theoremhst0 28264 A Hilbert-space-valued state is zero at the zero subspace. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.)
(𝑆 ∈ CHStates → (𝑆‘0) = 0)
 
Theoremsthil 28265 The value of a state at the full Hilbert space. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.)
(𝑆 ∈ States → (𝑆‘ ℋ) = 1)
 
Theoremstj 28266 The value of a state on a join. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.)
(𝑆 ∈ States → (((𝐴C𝐵C ) ∧ 𝐴 ⊆ (⊥‘𝐵)) → (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))
 
Theoremsto1i 28267 The state of a subspace plus the state of its orthocomplement. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
𝐴C       (𝑆 ∈ States → ((𝑆𝐴) + (𝑆‘(⊥‘𝐴))) = 1)
 
Theoremsto2i 28268 The state of the orthocomplement. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
𝐴C       (𝑆 ∈ States → (𝑆‘(⊥‘𝐴)) = (1 − (𝑆𝐴)))
 
Theoremstge1i 28269 If a state is greater than or equal to 1, it is 1. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.)
𝐴C       (𝑆 ∈ States → (1 ≤ (𝑆𝐴) ↔ (𝑆𝐴) = 1))
 
Theoremstle0i 28270 If a state is less than or equal to 0, it is 0. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.)
𝐴C       (𝑆 ∈ States → ((𝑆𝐴) ≤ 0 ↔ (𝑆𝐴) = 0))
 
Theoremstlei 28271 Ordering law for states. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝑆 ∈ States → (𝐴𝐵 → (𝑆𝐴) ≤ (𝑆𝐵)))
 
Theoremstlesi 28272 Ordering law for states. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝑆 ∈ States → (𝐴𝐵 → ((𝑆𝐴) = 1 → (𝑆𝐵) = 1)))
 
Theoremstji1i 28273 Join of components of Sasaki arrow ->1. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝑆 ∈ States → (𝑆‘((⊥‘𝐴) ∨ (𝐴𝐵))) = ((𝑆‘(⊥‘𝐴)) + (𝑆‘(𝐴𝐵))))
 
Theoremstm1i 28274 State of component of unit meet. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝑆 ∈ States → ((𝑆‘(𝐴𝐵)) = 1 → (𝑆𝐴) = 1))
 
Theoremstm1ri 28275 State of component of unit meet. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝑆 ∈ States → ((𝑆‘(𝐴𝐵)) = 1 → (𝑆𝐵) = 1))
 
Theoremstm1addi 28276 Sum of states whose meet is 1. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝑆 ∈ States → ((𝑆‘(𝐴𝐵)) = 1 → ((𝑆𝐴) + (𝑆𝐵)) = 2))
 
Theoremstaddi 28277 If the sum of 2 states is 2, then each state is 1. (Contributed by NM, 12-Nov-1999.) (New usage is discouraged.)
𝐴C    &   𝐵C       (𝑆 ∈ States → (((𝑆𝐴) + (𝑆𝐵)) = 2 → (𝑆𝐴) = 1))
 
Theoremstm1add3i 28278 Sum of states whose meet is 1. (Contributed by NM, 11-Nov-1999.) (New usage is discouraged.)
𝐴C    &   𝐵C    &   𝐶C       (𝑆 ∈ States → ((𝑆‘((𝐴𝐵) ∩ 𝐶)) = 1 → (((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = 3))
 
Theoremstadd3i 28279 If the sum of 3 states is 3, then each state is 1. (Contributed by NM, 13-Nov-1999.) (New usage is discouraged.)
𝐴C    &   𝐵C    &   𝐶C       (𝑆 ∈ States → ((((𝑆𝐴) + (𝑆𝐵)) + (𝑆𝐶)) = 3 → (𝑆𝐴) = 1))
 
Theoremst0 28280 The state of the zero subspace. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.)
(𝑆 ∈ States → (𝑆‘0) = 0)
 
Theoremstrlem1 28281* Lemma for strong state theorem: if closed subspace 𝐴 is not contained in 𝐵, there is a unit vector 𝑢 in their difference. (Contributed by NM, 25-Oct-1999.) (New usage is discouraged.)
𝐴C    &   𝐵C       𝐴𝐵 → ∃𝑢 ∈ (𝐴𝐵)(norm𝑢) = 1)
 
Theoremstrlem2 28282* Lemma for strong state theorem. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.)
𝑆 = (𝑥C ↦ ((norm‘((proj𝑥)‘𝑢))↑2))       (𝐶C → (𝑆𝐶) = ((norm‘((proj𝐶)‘𝑢))↑2))
 
Theoremstrlem3a 28283* Lemma for strong state theorem: the function 𝑆, that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.)
𝑆 = (𝑥C ↦ ((norm‘((proj𝑥)‘𝑢))↑2))       ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → 𝑆 ∈ States)
 
Theoremstrlem3 28284* Lemma for strong state theorem: the function 𝑆, that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. This lemma restates the hypotheses in a more convenient form to work with. (Contributed by NM, 28-Oct-1999.) (New usage is discouraged.)
𝑆 = (𝑥C ↦ ((norm‘((proj𝑥)‘𝑢))↑2))    &   (𝜑 ↔ (𝑢 ∈ (𝐴𝐵) ∧ (norm𝑢) = 1))    &   𝐴C    &   𝐵C       (𝜑𝑆 ∈ States)
 
Theoremstrlem4 28285* Lemma for strong state theorem. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.)
𝑆 = (𝑥C ↦ ((norm‘((proj𝑥)‘𝑢))↑2))    &   (𝜑 ↔ (𝑢 ∈ (𝐴𝐵) ∧ (norm𝑢) = 1))    &   𝐴C    &   𝐵C       (𝜑 → (𝑆𝐴) = 1)
 
Theoremstrlem5 28286* Lemma for strong state theorem. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.)
𝑆 = (𝑥C ↦ ((norm‘((proj𝑥)‘𝑢))↑2))    &   (𝜑 ↔ (𝑢 ∈ (𝐴𝐵) ∧ (norm𝑢) = 1))    &   𝐴C    &   𝐵C       (𝜑 → (𝑆𝐵) < 1)
 
Theoremstrlem6 28287* Lemma for strong state theorem. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.)
𝑆 = (𝑥C ↦ ((norm‘((proj𝑥)‘𝑢))↑2))    &   (𝜑 ↔ (𝑢 ∈ (𝐴𝐵) ∧ (norm𝑢) = 1))    &   𝐴C    &   𝐵C       (𝜑 → ¬ ((𝑆𝐴) = 1 → (𝑆𝐵) = 1))
 
Theoremstri 28288* Strong state theorem. The states on a Hilbert lattice define an ordering. Remark in [Mayet] p. 370. (Contributed by NM, 2-Nov-1999.) (New usage is discouraged.)
𝐴C    &   𝐵C       (∀𝑓 ∈ States ((𝑓𝐴) = 1 → (𝑓𝐵) = 1) → 𝐴𝐵)
 
Theoremstrb 28289* Strong state theorem (bidirectional version). (Contributed by NM, 7-Apr-2001.) (New usage is discouraged.)
𝐴C    &   𝐵C       (∀𝑓 ∈ States ((𝑓𝐴) = 1 → (𝑓𝐵) = 1) ↔ 𝐴𝐵)
 
Theoremhstrlem2 28290* Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.)
𝑆 = (𝑥C ↦ ((proj𝑥)‘𝑢))       (𝐶C → (𝑆𝐶) = ((proj𝐶)‘𝑢))
 
Theoremhstrlem3a 28291* Lemma for strong set of CH states theorem: the function 𝑆, that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.)
𝑆 = (𝑥C ↦ ((proj𝑥)‘𝑢))       ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → 𝑆 ∈ CHStates)
 
Theoremhstrlem3 28292* Lemma for strong set of CH states theorem: the function 𝑆, that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a state. This lemma restates the hypotheses in a more convenient form to work with. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.)
𝑆 = (𝑥C ↦ ((proj𝑥)‘𝑢))    &   (𝜑 ↔ (𝑢 ∈ (𝐴𝐵) ∧ (norm𝑢) = 1))    &   𝐴C    &   𝐵C       (𝜑𝑆 ∈ CHStates)
 
Theoremhstrlem4 28293* Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.)
𝑆 = (𝑥C ↦ ((proj𝑥)‘𝑢))    &   (𝜑 ↔ (𝑢 ∈ (𝐴𝐵) ∧ (norm𝑢) = 1))    &   𝐴C    &   𝐵C       (𝜑 → (norm‘(𝑆𝐴)) = 1)
 
Theoremhstrlem5 28294* Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.)
𝑆 = (𝑥C ↦ ((proj𝑥)‘𝑢))    &   (𝜑 ↔ (𝑢 ∈ (𝐴𝐵) ∧ (norm𝑢) = 1))    &   𝐴C    &   𝐵C       (𝜑 → (norm‘(𝑆𝐵)) < 1)
 
Theoremhstrlem6 28295* Lemma for strong set of CH states theorem. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.)
𝑆 = (𝑥C ↦ ((proj𝑥)‘𝑢))    &   (𝜑 ↔ (𝑢 ∈ (𝐴𝐵) ∧ (norm𝑢) = 1))    &   𝐴C    &   𝐵C       (𝜑 → ¬ ((norm‘(𝑆𝐴)) = 1 → (norm‘(𝑆𝐵)) = 1))
 
Theoremhstri 28296* Hilbert space admits a strong set of Hilbert-space-valued states (CH-states). Theorem in [Mayet3] p. 10. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.)
𝐴C    &   𝐵C       (∀𝑓 ∈ CHStates ((norm‘(𝑓𝐴)) = 1 → (norm‘(𝑓𝐵)) = 1) → 𝐴𝐵)
 
Theoremhstrbi 28297* Strong CH-state theorem (bidirectional version). Theorem in [Mayet3] p. 10 and its converse. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.)
𝐴C    &   𝐵C       (∀𝑓 ∈ CHStates ((norm‘(𝑓𝐴)) = 1 → (norm‘(𝑓𝐵)) = 1) ↔ 𝐴𝐵)
 
Theoremlargei 28298* A Hilbert lattice admits a largei set of states. Remark in [Mayet] p. 370. (Contributed by NM, 7-Apr-2001.) (New usage is discouraged.)
𝐴C       𝐴 = 0 ↔ ∃𝑓 ∈ States (𝑓𝐴) = 1)
 
Theoremjplem1 28299 Lemma for Jauch-Piron theorem. (Contributed by NM, 8-Apr-2001.) (New usage is discouraged.)
𝐴C       ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → (𝑢𝐴 ↔ ((norm‘((proj𝐴)‘𝑢))↑2) = 1))
 
Theoremjplem2 28300* Lemma for Jauch-Piron theorem. (Contributed by NM, 8-Apr-2001.) (New usage is discouraged.)
𝑆 = (𝑥C ↦ ((norm‘((proj𝑥)‘𝑢))↑2))    &   𝐴C       ((𝑢 ∈ ℋ ∧ (norm𝑢) = 1) → (𝑢𝐴 ↔ (𝑆𝐴) = 1))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42426
  Copyright terms: Public domain < Previous  Next >