Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaiun1 Structured version   Visualization version   GIF version

Theorem imaiun1 40086
Description: The image of an indexed union is the indexed union of the images. (Contributed by RP, 29-Jun-2020.)
Assertion
Ref Expression
imaiun1 ( 𝑥𝐴 𝐵𝐶) = 𝑥𝐴 (𝐵𝐶)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem imaiun1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexcom4 3249 . . . 4 (∃𝑥𝐴𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ ∃𝑧𝑥𝐴 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
2 vex 3489 . . . . . 6 𝑦 ∈ V
32elima3 5922 . . . . 5 (𝑦 ∈ (𝐵𝐶) ↔ ∃𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
43rexbii 3247 . . . 4 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ ∃𝑥𝐴𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
5 eliun 4909 . . . . . . 7 (⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑧, 𝑦⟩ ∈ 𝐵)
65anbi2i 624 . . . . . 6 ((𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵) ↔ (𝑧𝐶 ∧ ∃𝑥𝐴𝑧, 𝑦⟩ ∈ 𝐵))
7 r19.42v 3350 . . . . . 6 (∃𝑥𝐴 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵) ↔ (𝑧𝐶 ∧ ∃𝑥𝐴𝑧, 𝑦⟩ ∈ 𝐵))
86, 7bitr4i 280 . . . . 5 ((𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵) ↔ ∃𝑥𝐴 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
98exbii 1848 . . . 4 (∃𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵) ↔ ∃𝑧𝑥𝐴 (𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝐵))
101, 4, 93bitr4ri 306 . . 3 (∃𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
112elima3 5922 . . 3 (𝑦 ∈ ( 𝑥𝐴 𝐵𝐶) ↔ ∃𝑧(𝑧𝐶 ∧ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵))
12 eliun 4909 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
1310, 11, 123bitr4i 305 . 2 (𝑦 ∈ ( 𝑥𝐴 𝐵𝐶) ↔ 𝑦 𝑥𝐴 (𝐵𝐶))
1413eqriv 2818 1 ( 𝑥𝐴 𝐵𝐶) = 𝑥𝐴 (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  wex 1780  wcel 2114  wrex 3139  cop 4559   ciun 4905  cima 5544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pr 5316
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3488  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-nul 4280  df-if 4454  df-sn 4554  df-pr 4556  df-op 4560  df-iun 4907  df-br 5053  df-opab 5115  df-xp 5547  df-cnv 5549  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554
This theorem is referenced by:  trclimalb2  40161
  Copyright terms: Public domain W3C validator