![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inabs | Structured version Visualization version GIF version |
Description: Absorption law for intersection. (Contributed by NM, 16-Apr-2006.) |
Ref | Expression |
---|---|
inabs | ⊢ (𝐴 ∩ (𝐴 ∪ 𝐵)) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3809 | . 2 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
2 | df-ss 3621 | . 2 ⊢ (𝐴 ⊆ (𝐴 ∪ 𝐵) ↔ (𝐴 ∩ (𝐴 ∪ 𝐵)) = 𝐴) | |
3 | 1, 2 | mpbi 220 | 1 ⊢ (𝐴 ∩ (𝐴 ∪ 𝐵)) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∪ cun 3605 ∩ cin 3606 ⊆ wss 3607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-un 3612 df-in 3614 df-ss 3621 |
This theorem is referenced by: dfif5 4135 caragenuncllem 41047 |
Copyright terms: Public domain | W3C validator |