Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  inabs Structured version   Visualization version   GIF version

Theorem inabs 3888
 Description: Absorption law for intersection. (Contributed by NM, 16-Apr-2006.)
Assertion
Ref Expression
inabs (𝐴 ∩ (𝐴𝐵)) = 𝐴

Proof of Theorem inabs
StepHypRef Expression
1 ssun1 3809 . 2 𝐴 ⊆ (𝐴𝐵)
2 df-ss 3621 . 2 (𝐴 ⊆ (𝐴𝐵) ↔ (𝐴 ∩ (𝐴𝐵)) = 𝐴)
31, 2mpbi 220 1 (𝐴 ∩ (𝐴𝐵)) = 𝐴
 Colors of variables: wff setvar class Syntax hints:   = wceq 1523   ∪ cun 3605   ∩ cin 3606   ⊆ wss 3607 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233  df-un 3612  df-in 3614  df-ss 3621 This theorem is referenced by:  dfif5  4135  caragenuncllem  41047
 Copyright terms: Public domain W3C validator