Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenuncllem Structured version   Visualization version   GIF version

Theorem caragenuncllem 40063
Description: The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenuncllem.o (𝜑𝑂 ∈ OutMeas)
caragenuncllem.s 𝑆 = (CaraGen‘𝑂)
caragenuncllem.e (𝜑𝐸𝑆)
caragenuncllem.f (𝜑𝐹𝑆)
caragenuncllem.x 𝑋 = dom 𝑂
caragenuncllem.a (𝜑𝐴𝑋)
Assertion
Ref Expression
caragenuncllem (𝜑 → ((𝑂‘(𝐴 ∩ (𝐸𝐹))) +𝑒 (𝑂‘(𝐴 ∖ (𝐸𝐹)))) = (𝑂𝐴))

Proof of Theorem caragenuncllem
StepHypRef Expression
1 caragenuncllem.o . . . . . 6 (𝜑𝑂 ∈ OutMeas)
2 caragenuncllem.s . . . . . 6 𝑆 = (CaraGen‘𝑂)
3 caragenuncllem.x . . . . . 6 𝑋 = dom 𝑂
4 caragenuncllem.e . . . . . 6 (𝜑𝐸𝑆)
5 caragenuncllem.a . . . . . . 7 (𝜑𝐴𝑋)
65ssinss1d 38736 . . . . . 6 (𝜑 → (𝐴 ∩ (𝐸𝐹)) ⊆ 𝑋)
71, 2, 3, 4, 6caragensplit 40051 . . . . 5 (𝜑 → ((𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) +𝑒 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸))) = (𝑂‘(𝐴 ∩ (𝐸𝐹))))
87eqcomd 2627 . . . 4 (𝜑 → (𝑂‘(𝐴 ∩ (𝐸𝐹))) = ((𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) +𝑒 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸))))
9 inass 3807 . . . . . . . 8 ((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸) = (𝐴 ∩ ((𝐸𝐹) ∩ 𝐸))
10 incom 3789 . . . . . . . . . 10 ((𝐸𝐹) ∩ 𝐸) = (𝐸 ∩ (𝐸𝐹))
11 inabs 3839 . . . . . . . . . 10 (𝐸 ∩ (𝐸𝐹)) = 𝐸
1210, 11eqtri 2643 . . . . . . . . 9 ((𝐸𝐹) ∩ 𝐸) = 𝐸
1312ineq2i 3795 . . . . . . . 8 (𝐴 ∩ ((𝐸𝐹) ∩ 𝐸)) = (𝐴𝐸)
149, 13eqtri 2643 . . . . . . 7 ((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸) = (𝐴𝐸)
1514fveq2i 6161 . . . . . 6 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) = (𝑂‘(𝐴𝐸))
16 incom 3789 . . . . . . . . . 10 ((𝐴𝐸) ∩ 𝐹) = (𝐹 ∩ (𝐴𝐸))
17 indifcom 3854 . . . . . . . . . 10 (𝐹 ∩ (𝐴𝐸)) = (𝐴 ∩ (𝐹𝐸))
1816, 17eqtr2i 2644 . . . . . . . . 9 (𝐴 ∩ (𝐹𝐸)) = ((𝐴𝐸) ∩ 𝐹)
1918eqcomi 2630 . . . . . . . 8 ((𝐴𝐸) ∩ 𝐹) = (𝐴 ∩ (𝐹𝐸))
20 difundir 3862 . . . . . . . . . 10 ((𝐸𝐹) ∖ 𝐸) = ((𝐸𝐸) ∪ (𝐹𝐸))
21 difid 3928 . . . . . . . . . . 11 (𝐸𝐸) = ∅
2221uneq1i 3747 . . . . . . . . . 10 ((𝐸𝐸) ∪ (𝐹𝐸)) = (∅ ∪ (𝐹𝐸))
23 0un 38737 . . . . . . . . . 10 (∅ ∪ (𝐹𝐸)) = (𝐹𝐸)
2420, 22, 233eqtrri 2648 . . . . . . . . 9 (𝐹𝐸) = ((𝐸𝐹) ∖ 𝐸)
2524ineq2i 3795 . . . . . . . 8 (𝐴 ∩ (𝐹𝐸)) = (𝐴 ∩ ((𝐸𝐹) ∖ 𝐸))
26 indif2 3852 . . . . . . . 8 (𝐴 ∩ ((𝐸𝐹) ∖ 𝐸)) = ((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸)
2719, 25, 263eqtrri 2648 . . . . . . 7 ((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸) = ((𝐴𝐸) ∩ 𝐹)
2827fveq2i 6161 . . . . . 6 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸)) = (𝑂‘((𝐴𝐸) ∩ 𝐹))
2915, 28oveq12i 6627 . . . . 5 ((𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) +𝑒 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹)))
3029a1i 11 . . . 4 (𝜑 → ((𝑂‘((𝐴 ∩ (𝐸𝐹)) ∩ 𝐸)) +𝑒 (𝑂‘((𝐴 ∩ (𝐸𝐹)) ∖ 𝐸))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))))
31 eqidd 2622 . . . 4 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))))
328, 30, 313eqtrd 2659 . . 3 (𝜑 → (𝑂‘(𝐴 ∩ (𝐸𝐹))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))))
33 difun1 3869 . . . . 5 (𝐴 ∖ (𝐸𝐹)) = ((𝐴𝐸) ∖ 𝐹)
3433fveq2i 6161 . . . 4 (𝑂‘(𝐴 ∖ (𝐸𝐹))) = (𝑂‘((𝐴𝐸) ∖ 𝐹))
3534a1i 11 . . 3 (𝜑 → (𝑂‘(𝐴 ∖ (𝐸𝐹))) = (𝑂‘((𝐴𝐸) ∖ 𝐹)))
3632, 35oveq12d 6633 . 2 (𝜑 → ((𝑂‘(𝐴 ∩ (𝐸𝐹))) +𝑒 (𝑂‘(𝐴 ∖ (𝐸𝐹)))) = (((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹))))
375ssinss1d 38736 . . . . 5 (𝜑 → (𝐴𝐸) ⊆ 𝑋)
381, 3, 37omexrcl 40058 . . . 4 (𝜑 → (𝑂‘(𝐴𝐸)) ∈ ℝ*)
391, 3, 37omecl 40054 . . . . 5 (𝜑 → (𝑂‘(𝐴𝐸)) ∈ (0[,]+∞))
4039xrge0nemnfd 39047 . . . 4 (𝜑 → (𝑂‘(𝐴𝐸)) ≠ -∞)
4138, 40jca 554 . . 3 (𝜑 → ((𝑂‘(𝐴𝐸)) ∈ ℝ* ∧ (𝑂‘(𝐴𝐸)) ≠ -∞))
42 caragenuncllem.f . . . . . . 7 (𝜑𝐹𝑆)
431, 2, 42, 3caragenelss 40052 . . . . . 6 (𝜑𝐹𝑋)
4443ssinss2d 38750 . . . . 5 (𝜑 → ((𝐴𝐸) ∩ 𝐹) ⊆ 𝑋)
451, 3, 44omexrcl 40058 . . . 4 (𝜑 → (𝑂‘((𝐴𝐸) ∩ 𝐹)) ∈ ℝ*)
461, 3, 44omecl 40054 . . . . 5 (𝜑 → (𝑂‘((𝐴𝐸) ∩ 𝐹)) ∈ (0[,]+∞))
4746xrge0nemnfd 39047 . . . 4 (𝜑 → (𝑂‘((𝐴𝐸) ∩ 𝐹)) ≠ -∞)
4845, 47jca 554 . . 3 (𝜑 → ((𝑂‘((𝐴𝐸) ∩ 𝐹)) ∈ ℝ* ∧ (𝑂‘((𝐴𝐸) ∩ 𝐹)) ≠ -∞))
495ssdifssd 3732 . . . . . 6 (𝜑 → (𝐴𝐸) ⊆ 𝑋)
5049ssdifssd 3732 . . . . 5 (𝜑 → ((𝐴𝐸) ∖ 𝐹) ⊆ 𝑋)
511, 3, 50omexrcl 40058 . . . 4 (𝜑 → (𝑂‘((𝐴𝐸) ∖ 𝐹)) ∈ ℝ*)
521, 3, 50omecl 40054 . . . . 5 (𝜑 → (𝑂‘((𝐴𝐸) ∖ 𝐹)) ∈ (0[,]+∞))
5352xrge0nemnfd 39047 . . . 4 (𝜑 → (𝑂‘((𝐴𝐸) ∖ 𝐹)) ≠ -∞)
5451, 53jca 554 . . 3 (𝜑 → ((𝑂‘((𝐴𝐸) ∖ 𝐹)) ∈ ℝ* ∧ (𝑂‘((𝐴𝐸) ∖ 𝐹)) ≠ -∞))
55 xaddass 12038 . . 3 ((((𝑂‘(𝐴𝐸)) ∈ ℝ* ∧ (𝑂‘(𝐴𝐸)) ≠ -∞) ∧ ((𝑂‘((𝐴𝐸) ∩ 𝐹)) ∈ ℝ* ∧ (𝑂‘((𝐴𝐸) ∩ 𝐹)) ≠ -∞) ∧ ((𝑂‘((𝐴𝐸) ∖ 𝐹)) ∈ ℝ* ∧ (𝑂‘((𝐴𝐸) ∖ 𝐹)) ≠ -∞)) → (((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹))) = ((𝑂‘(𝐴𝐸)) +𝑒 ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹)))))
5641, 48, 54, 55syl3anc 1323 . 2 (𝜑 → (((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘((𝐴𝐸) ∩ 𝐹))) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹))) = ((𝑂‘(𝐴𝐸)) +𝑒 ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹)))))
571, 2, 3, 42, 49caragensplit 40051 . . . 4 (𝜑 → ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹))) = (𝑂‘(𝐴𝐸)))
5857oveq2d 6631 . . 3 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹)))) = ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))))
591, 2, 3, 4, 5caragensplit 40051 . . 3 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 (𝑂‘(𝐴𝐸))) = (𝑂𝐴))
6058, 59eqtrd 2655 . 2 (𝜑 → ((𝑂‘(𝐴𝐸)) +𝑒 ((𝑂‘((𝐴𝐸) ∩ 𝐹)) +𝑒 (𝑂‘((𝐴𝐸) ∖ 𝐹)))) = (𝑂𝐴))
6136, 56, 603eqtrd 2659 1 (𝜑 → ((𝑂‘(𝐴 ∩ (𝐸𝐹))) +𝑒 (𝑂‘(𝐴 ∖ (𝐸𝐹)))) = (𝑂𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  cdif 3557  cun 3558  cin 3559  wss 3560  c0 3897   cuni 4409  dom cdm 5084  cfv 5857  (class class class)co 6615  -∞cmnf 10032  *cxr 10033   +𝑒 cxad 11904  OutMeascome 40040  CaraGenccaragen 40042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-addass 9961  ax-i2m1 9964  ax-1ne0 9965  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-po 5005  df-so 5006  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-1st 7128  df-2nd 7129  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-xadd 11907  df-icc 12140  df-ome 40041  df-caragen 40043
This theorem is referenced by:  caragenuncl  40064
  Copyright terms: Public domain W3C validator