MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotan0 Structured version   Visualization version   GIF version

Theorem iotan0 6345
Description: Representation of "the unique element such that 𝜑 " with a class expression 𝐴 which is not the empty set (that means that "the unique element such that 𝜑 " exists). (Contributed by AV, 30-Jan-2024.)
Hypothesis
Ref Expression
iotan0.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
iotan0 ((𝐴𝑉𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem iotan0
StepHypRef Expression
1 pm13.18 3097 . . . . . 6 ((𝐴 = (℩𝑥𝜑) ∧ 𝐴 ≠ ∅) → (℩𝑥𝜑) ≠ ∅)
21expcom 416 . . . . 5 (𝐴 ≠ ∅ → (𝐴 = (℩𝑥𝜑) → (℩𝑥𝜑) ≠ ∅))
3 iotanul 6333 . . . . . 6 (¬ ∃!𝑥𝜑 → (℩𝑥𝜑) = ∅)
43necon1ai 3043 . . . . 5 ((℩𝑥𝜑) ≠ ∅ → ∃!𝑥𝜑)
52, 4syl6 35 . . . 4 (𝐴 ≠ ∅ → (𝐴 = (℩𝑥𝜑) → ∃!𝑥𝜑))
65a1i 11 . . 3 (𝐴𝑉 → (𝐴 ≠ ∅ → (𝐴 = (℩𝑥𝜑) → ∃!𝑥𝜑)))
763imp 1107 . 2 ((𝐴𝑉𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → ∃!𝑥𝜑)
8 eqcom 2828 . . . . 5 (𝐴 = (℩𝑥𝜑) ↔ (℩𝑥𝜑) = 𝐴)
9 iotan0.1 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜓))
109iota2 6344 . . . . . 6 ((𝐴𝑉 ∧ ∃!𝑥𝜑) → (𝜓 ↔ (℩𝑥𝜑) = 𝐴))
1110biimprd 250 . . . . 5 ((𝐴𝑉 ∧ ∃!𝑥𝜑) → ((℩𝑥𝜑) = 𝐴𝜓))
128, 11syl5bi 244 . . . 4 ((𝐴𝑉 ∧ ∃!𝑥𝜑) → (𝐴 = (℩𝑥𝜑) → 𝜓))
1312impancom 454 . . 3 ((𝐴𝑉𝐴 = (℩𝑥𝜑)) → (∃!𝑥𝜑𝜓))
14133adant2 1127 . 2 ((𝐴𝑉𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → (∃!𝑥𝜑𝜓))
157, 14mpd 15 1 ((𝐴𝑉𝐴 ≠ ∅ ∧ 𝐴 = (℩𝑥𝜑)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  ∃!weu 2653  wne 3016  c0 4291  cio 6312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-sn 4568  df-pr 4570  df-uni 4839  df-iota 6314
This theorem is referenced by:  sgrpidmnd  17916
  Copyright terms: Public domain W3C validator