MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgrpidmnd Structured version   Visualization version   GIF version

Theorem sgrpidmnd 17916
Description: A semigroup with an identity element which is not the empty set is a monoid. Of course there could be monoids with the empty set as identity element (see, for example, the monoid of the power set of a class under union, pwmnd 18102 and pwmndid 18101), but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.)
Hypotheses
Ref Expression
sgrpidmnd.b 𝐵 = (Base‘𝐺)
sgrpidmnd.0 0 = (0g𝐺)
Assertion
Ref Expression
sgrpidmnd ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (𝑒 ≠ ∅ ∧ 𝑒 = 0 )) → 𝐺 ∈ Mnd)
Distinct variable groups:   𝐵,𝑒   𝑒,𝐺
Allowed substitution hint:   0 (𝑒)

Proof of Theorem sgrpidmnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sgrpidmnd.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
2 eqid 2821 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
3 sgrpidmnd.0 . . . . . . . . . 10 0 = (0g𝐺)
41, 2, 3grpidval 17871 . . . . . . . . 9 0 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))
54eqeq2i 2834 . . . . . . . 8 (𝑒 = 0𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥))))
6 eleq1w 2895 . . . . . . . . . . . . 13 (𝑦 = 𝑒 → (𝑦𝐵𝑒𝐵))
7 oveq1 7163 . . . . . . . . . . . . . . 15 (𝑦 = 𝑒 → (𝑦(+g𝐺)𝑥) = (𝑒(+g𝐺)𝑥))
87eqeq1d 2823 . . . . . . . . . . . . . 14 (𝑦 = 𝑒 → ((𝑦(+g𝐺)𝑥) = 𝑥 ↔ (𝑒(+g𝐺)𝑥) = 𝑥))
98ovanraleqv 7180 . . . . . . . . . . . . 13 (𝑦 = 𝑒 → (∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥) ↔ ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
106, 9anbi12d 632 . . . . . . . . . . . 12 (𝑦 = 𝑒 → ((𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)) ↔ (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))))
1110iotan0 6345 . . . . . . . . . . 11 ((𝑒𝐵𝑒 ≠ ∅ ∧ 𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))) → (𝑒𝐵 ∧ ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
12 rsp 3205 . . . . . . . . . . 11 (∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥) → (𝑥𝐵 → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
1311, 12simpl2im 506 . . . . . . . . . 10 ((𝑒𝐵𝑒 ≠ ∅ ∧ 𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))) → (𝑥𝐵 → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
14133expb 1116 . . . . . . . . 9 ((𝑒𝐵 ∧ (𝑒 ≠ ∅ ∧ 𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥))))) → (𝑥𝐵 → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
1514expcom 416 . . . . . . . 8 ((𝑒 ≠ ∅ ∧ 𝑒 = (℩𝑦(𝑦𝐵 ∧ ∀𝑥𝐵 ((𝑦(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑦) = 𝑥)))) → (𝑒𝐵 → (𝑥𝐵 → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))))
165, 15sylan2b 595 . . . . . . 7 ((𝑒 ≠ ∅ ∧ 𝑒 = 0 ) → (𝑒𝐵 → (𝑥𝐵 → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))))
1716impcom 410 . . . . . 6 ((𝑒𝐵 ∧ (𝑒 ≠ ∅ ∧ 𝑒 = 0 )) → (𝑥𝐵 → ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
1817ralrimiv 3181 . . . . 5 ((𝑒𝐵 ∧ (𝑒 ≠ ∅ ∧ 𝑒 = 0 )) → ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))
1918ex 415 . . . 4 (𝑒𝐵 → ((𝑒 ≠ ∅ ∧ 𝑒 = 0 ) → ∀𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
2019reximia 3242 . . 3 (∃𝑒𝐵 (𝑒 ≠ ∅ ∧ 𝑒 = 0 ) → ∃𝑒𝐵𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥))
2120anim2i 618 . 2 ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (𝑒 ≠ ∅ ∧ 𝑒 = 0 )) → (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
221, 2ismnddef 17913 . 2 (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑥𝐵 ((𝑒(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑒) = 𝑥)))
2321, 22sylibr 236 1 ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (𝑒 ≠ ∅ ∧ 𝑒 = 0 )) → 𝐺 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  c0 4291  cio 6312  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  0gc0g 16713  Smgrpcsgrp 17900  Mndcmnd 17911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-0g 16715  df-mnd 17912
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator