Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isacycgr1 Structured version   Visualization version   GIF version

Theorem isacycgr1 32414
Description: The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.)
Assertion
Ref Expression
isacycgr1 (𝐺𝑊 → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
Distinct variable group:   𝑓,𝐺,𝑝
Allowed substitution hints:   𝑊(𝑓,𝑝)

Proof of Theorem isacycgr1
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6663 . . . . 5 (𝑔 = 𝐺 → (Cycles‘𝑔) = (Cycles‘𝐺))
21breqd 5070 . . . 4 (𝑔 = 𝐺 → (𝑓(Cycles‘𝑔)𝑝𝑓(Cycles‘𝐺)𝑝))
32imbi1d 344 . . 3 (𝑔 = 𝐺 → ((𝑓(Cycles‘𝑔)𝑝𝑓 = ∅) ↔ (𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
432albidv 1923 . 2 (𝑔 = 𝐺 → (∀𝑓𝑝(𝑓(Cycles‘𝑔)𝑝𝑓 = ∅) ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
5 dfacycgr1 32412 . 2 AcyclicGraph = {𝑔 ∣ ∀𝑓𝑝(𝑓(Cycles‘𝑔)𝑝𝑓 = ∅)}
64, 5elab2g 3664 1 (𝐺𝑊 → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wal 1534   = wceq 1536  wcel 2113  c0 4284   class class class wbr 5059  cfv 6348  Cyclesccycls 27564  AcyclicGraphcacycgr 32410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-rab 3146  df-v 3493  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-iota 6307  df-fv 6356  df-acycgr 32411
This theorem is referenced by:  acycgrcycl  32415  acycgr1v  32417
  Copyright terms: Public domain W3C validator