Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acycgr1v Structured version   Visualization version   GIF version

Theorem acycgr1v 32417
Description: A multigraph with one vertex is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023.)
Hypothesis
Ref Expression
acycgrv.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
acycgr1v ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph)

Proof of Theorem acycgr1v
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cyclispth 27576 . . . . . . . . . . . 12 (𝑓(Cycles‘𝐺)𝑝𝑓(Paths‘𝐺)𝑝)
2 acycgrv.1 . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
32pthhashvtx 32395 . . . . . . . . . . . 12 (𝑓(Paths‘𝐺)𝑝 → (♯‘𝑓) ≤ (♯‘𝑉))
41, 3syl 17 . . . . . . . . . . 11 (𝑓(Cycles‘𝐺)𝑝 → (♯‘𝑓) ≤ (♯‘𝑉))
54adantr 483 . . . . . . . . . 10 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ (♯‘𝑉))
6 breq2 5063 . . . . . . . . . . 11 ((♯‘𝑉) = 1 → ((♯‘𝑓) ≤ (♯‘𝑉) ↔ (♯‘𝑓) ≤ 1))
76adantl 484 . . . . . . . . . 10 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) ≤ (♯‘𝑉) ↔ (♯‘𝑓) ≤ 1))
85, 7mpbid 234 . . . . . . . . 9 ((𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ 1)
983adant1 1125 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≤ 1)
10 umgrn1cycl 27583 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝) → (♯‘𝑓) ≠ 1)
11103adant3 1127 . . . . . . . . 9 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) ≠ 1)
1211necomd 3070 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → 1 ≠ (♯‘𝑓))
13 cycliswlk 27577 . . . . . . . . . 10 (𝑓(Cycles‘𝐺)𝑝𝑓(Walks‘𝐺)𝑝)
14 wlkcl 27395 . . . . . . . . . . . 12 (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑓) ∈ ℕ0)
1514nn0red 11950 . . . . . . . . . . 11 (𝑓(Walks‘𝐺)𝑝 → (♯‘𝑓) ∈ ℝ)
16 1red 10635 . . . . . . . . . . 11 (𝑓(Walks‘𝐺)𝑝 → 1 ∈ ℝ)
1715, 16ltlend 10778 . . . . . . . . . 10 (𝑓(Walks‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓))))
1813, 17syl 17 . . . . . . . . 9 (𝑓(Cycles‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓))))
19183ad2ant2 1129 . . . . . . . 8 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) < 1 ↔ ((♯‘𝑓) ≤ 1 ∧ 1 ≠ (♯‘𝑓))))
209, 12, 19mpbir2and 711 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) < 1)
21 nn0lt10b 12038 . . . . . . . . 9 ((♯‘𝑓) ∈ ℕ0 → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0))
2213, 14, 213syl 18 . . . . . . . 8 (𝑓(Cycles‘𝐺)𝑝 → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0))
23223ad2ant2 1129 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → ((♯‘𝑓) < 1 ↔ (♯‘𝑓) = 0))
2420, 23mpbid 234 . . . . . 6 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → (♯‘𝑓) = 0)
25 hasheq0 13721 . . . . . . 7 (𝑓 ∈ V → ((♯‘𝑓) = 0 ↔ 𝑓 = ∅))
2625elv 3496 . . . . . 6 ((♯‘𝑓) = 0 ↔ 𝑓 = ∅)
2724, 26sylib 220 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑉) = 1) → 𝑓 = ∅)
28273com23 1121 . . . 4 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1 ∧ 𝑓(Cycles‘𝐺)𝑝) → 𝑓 = ∅)
29283expia 1116 . . 3 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → (𝑓(Cycles‘𝐺)𝑝𝑓 = ∅))
3029alrimivv 1928 . 2 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅))
31 isacycgr1 32414 . . 3 (𝐺 ∈ UMGraph → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
3231adantr 483 . 2 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓𝑝(𝑓(Cycles‘𝐺)𝑝𝑓 = ∅)))
3330, 32mpbird 259 1 ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082  wal 1534   = wceq 1536  wcel 2113  wne 3015  Vcvv 3491  c0 4284   class class class wbr 5059  cfv 6348  0cc0 10530  1c1 10531   < clt 10668  cle 10669  0cn0 11891  chash 13687  Vtxcvtx 26779  UMGraphcumgr 26864  Walkscwlks 27376  Pathscpths 27491  Cyclesccycls 27564  AcyclicGraphcacycgr 32410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-map 8401  df-pm 8402  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-dju 9323  df-card 9361  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12890  df-fzo 13031  df-hash 13688  df-word 13859  df-upgr 26865  df-umgr 26866  df-wlks 27379  df-trls 27472  df-pths 27495  df-cycls 27566  df-acycgr 32411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator