Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islininds Structured version   Visualization version   GIF version

Theorem islininds 44521
Description: The property of being a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
islininds.b 𝐵 = (Base‘𝑀)
islininds.z 𝑍 = (0g𝑀)
islininds.r 𝑅 = (Scalar‘𝑀)
islininds.e 𝐸 = (Base‘𝑅)
islininds.0 0 = (0g𝑅)
Assertion
Ref Expression
islininds ((𝑆𝑉𝑀𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
Distinct variable groups:   𝑓,𝐸   𝑓,𝑀,𝑥   𝑆,𝑓,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑓)   𝑅(𝑥,𝑓)   𝐸(𝑥)   𝑉(𝑥,𝑓)   𝑊(𝑥,𝑓)   0 (𝑥,𝑓)   𝑍(𝑥,𝑓)

Proof of Theorem islininds
Dummy variables 𝑚 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 485 . . . 4 ((𝑠 = 𝑆𝑚 = 𝑀) → 𝑠 = 𝑆)
2 fveq2 6670 . . . . . . 7 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
3 islininds.b . . . . . . 7 𝐵 = (Base‘𝑀)
42, 3syl6eqr 2874 . . . . . 6 (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵)
54adantl 484 . . . . 5 ((𝑠 = 𝑆𝑚 = 𝑀) → (Base‘𝑚) = 𝐵)
65pweqd 4558 . . . 4 ((𝑠 = 𝑆𝑚 = 𝑀) → 𝒫 (Base‘𝑚) = 𝒫 𝐵)
71, 6eleq12d 2907 . . 3 ((𝑠 = 𝑆𝑚 = 𝑀) → (𝑠 ∈ 𝒫 (Base‘𝑚) ↔ 𝑆 ∈ 𝒫 𝐵))
8 fveq2 6670 . . . . . . . . 9 (𝑚 = 𝑀 → (Scalar‘𝑚) = (Scalar‘𝑀))
9 islininds.r . . . . . . . . 9 𝑅 = (Scalar‘𝑀)
108, 9syl6eqr 2874 . . . . . . . 8 (𝑚 = 𝑀 → (Scalar‘𝑚) = 𝑅)
1110fveq2d 6674 . . . . . . 7 (𝑚 = 𝑀 → (Base‘(Scalar‘𝑚)) = (Base‘𝑅))
12 islininds.e . . . . . . 7 𝐸 = (Base‘𝑅)
1311, 12syl6eqr 2874 . . . . . 6 (𝑚 = 𝑀 → (Base‘(Scalar‘𝑚)) = 𝐸)
1413adantl 484 . . . . 5 ((𝑠 = 𝑆𝑚 = 𝑀) → (Base‘(Scalar‘𝑚)) = 𝐸)
1514, 1oveq12d 7174 . . . 4 ((𝑠 = 𝑆𝑚 = 𝑀) → ((Base‘(Scalar‘𝑚)) ↑m 𝑠) = (𝐸m 𝑆))
168adantl 484 . . . . . . . . . 10 ((𝑠 = 𝑆𝑚 = 𝑀) → (Scalar‘𝑚) = (Scalar‘𝑀))
1716, 9syl6eqr 2874 . . . . . . . . 9 ((𝑠 = 𝑆𝑚 = 𝑀) → (Scalar‘𝑚) = 𝑅)
1817fveq2d 6674 . . . . . . . 8 ((𝑠 = 𝑆𝑚 = 𝑀) → (0g‘(Scalar‘𝑚)) = (0g𝑅))
19 islininds.0 . . . . . . . 8 0 = (0g𝑅)
2018, 19syl6eqr 2874 . . . . . . 7 ((𝑠 = 𝑆𝑚 = 𝑀) → (0g‘(Scalar‘𝑚)) = 0 )
2120breq2d 5078 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → (𝑓 finSupp (0g‘(Scalar‘𝑚)) ↔ 𝑓 finSupp 0 ))
22 fveq2 6670 . . . . . . . . 9 (𝑚 = 𝑀 → ( linC ‘𝑚) = ( linC ‘𝑀))
2322adantl 484 . . . . . . . 8 ((𝑠 = 𝑆𝑚 = 𝑀) → ( linC ‘𝑚) = ( linC ‘𝑀))
24 eqidd 2822 . . . . . . . 8 ((𝑠 = 𝑆𝑚 = 𝑀) → 𝑓 = 𝑓)
2523, 24, 1oveq123d 7177 . . . . . . 7 ((𝑠 = 𝑆𝑚 = 𝑀) → (𝑓( linC ‘𝑚)𝑠) = (𝑓( linC ‘𝑀)𝑆))
26 fveq2 6670 . . . . . . . . 9 (𝑚 = 𝑀 → (0g𝑚) = (0g𝑀))
2726adantl 484 . . . . . . . 8 ((𝑠 = 𝑆𝑚 = 𝑀) → (0g𝑚) = (0g𝑀))
28 islininds.z . . . . . . . 8 𝑍 = (0g𝑀)
2927, 28syl6eqr 2874 . . . . . . 7 ((𝑠 = 𝑆𝑚 = 𝑀) → (0g𝑚) = 𝑍)
3025, 29eqeq12d 2837 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → ((𝑓( linC ‘𝑚)𝑠) = (0g𝑚) ↔ (𝑓( linC ‘𝑀)𝑆) = 𝑍))
3121, 30anbi12d 632 . . . . 5 ((𝑠 = 𝑆𝑚 = 𝑀) → ((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g𝑚)) ↔ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)))
3210fveq2d 6674 . . . . . . . . 9 (𝑚 = 𝑀 → (0g‘(Scalar‘𝑚)) = (0g𝑅))
3332, 19syl6eqr 2874 . . . . . . . 8 (𝑚 = 𝑀 → (0g‘(Scalar‘𝑚)) = 0 )
3433adantl 484 . . . . . . 7 ((𝑠 = 𝑆𝑚 = 𝑀) → (0g‘(Scalar‘𝑚)) = 0 )
3534eqeq2d 2832 . . . . . 6 ((𝑠 = 𝑆𝑚 = 𝑀) → ((𝑓𝑥) = (0g‘(Scalar‘𝑚)) ↔ (𝑓𝑥) = 0 ))
361, 35raleqbidv 3401 . . . . 5 ((𝑠 = 𝑆𝑚 = 𝑀) → (∀𝑥𝑠 (𝑓𝑥) = (0g‘(Scalar‘𝑚)) ↔ ∀𝑥𝑆 (𝑓𝑥) = 0 ))
3731, 36imbi12d 347 . . . 4 ((𝑠 = 𝑆𝑚 = 𝑀) → (((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g𝑚)) → ∀𝑥𝑠 (𝑓𝑥) = (0g‘(Scalar‘𝑚))) ↔ ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
3815, 37raleqbidv 3401 . . 3 ((𝑠 = 𝑆𝑚 = 𝑀) → (∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g𝑚)) → ∀𝑥𝑠 (𝑓𝑥) = (0g‘(Scalar‘𝑚))) ↔ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
397, 38anbi12d 632 . 2 ((𝑠 = 𝑆𝑚 = 𝑀) → ((𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g𝑚)) → ∀𝑥𝑠 (𝑓𝑥) = (0g‘(Scalar‘𝑚)))) ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
40 df-lininds 44517 . 2 linIndS = {⟨𝑠, 𝑚⟩ ∣ (𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g𝑚)) → ∀𝑥𝑠 (𝑓𝑥) = (0g‘(Scalar‘𝑚))))}
4139, 40brabga 5421 1 ((𝑆𝑉𝑀𝑊) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸m 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  𝒫 cpw 4539   class class class wbr 5066  cfv 6355  (class class class)co 7156  m cmap 8406   finSupp cfsupp 8833  Basecbs 16483  Scalarcsca 16568  0gc0g 16713   linC clinc 44479   linIndS clininds 44515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-iota 6314  df-fv 6363  df-ov 7159  df-lininds 44517
This theorem is referenced by:  linindsi  44522  islinindfis  44524  islindeps  44528  lindslininds  44539  linds0  44540  lindsrng01  44543  snlindsntor  44546
  Copyright terms: Public domain W3C validator